Hydrobiologia

, Volume 603, Issue 1, pp 183–196

Summer temperature variation and implications for juvenile Atlantic salmon

  • Martha E. Mather
  • Donna L. Parrish
  • Cara A. Campbell
  • James R. McMenemy
  • Joseph M. Smith
Primary research paper

Abstract

Temperature is important to fish in determining their geographic distribution. For cool- and cold-water fish, thermal regimes are especially critical at the southern end of a species’ range. Although temperature is an easy variable to measure, biological interpretation is difficult. Thus, how to determine what temperatures are meaningful to fish in the field is a challenge. Herein, we used the Connecticut River as a model system and Atlantic salmon (Salmo salar) as a model species with which to assess the effects of summer temperatures on the density of age 0 parr. Specifically, we asked: (1) What are the spatial and temporal temperature patterns in the Connecticut River during summer? (2) What metrics might detect effects of high temperatures? and (3) How is temperature variability related to density of Atlantic salmon during their first summer? Although the most southern site was the warmest, some northern sites were also warm, and some southern sites were moderately cool. This suggests localized, within basin variation in temperature. Daily and hourly means showed extreme values not apparent in the seasonal means. We observed significant relationships between age 0 parr density and days at potentially stressful, warm temperatures (≥23°C). Based on these results, we propose that useful field reference points need to incorporate the synergistic effect of other stressors that fish encounter in the field as well as the complexity associated with cycling temperatures and thermal refuges. Understanding the effects of temperature may aid conservation efforts for Atlantic salmon in the Connecticut River and other North Atlantic systems.

Keywords

Global climate change Salmo salar Thermal regime 

References

  1. Beitinger, T. L. & W. A. Bennett, 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environmental Biology of Fishes 58: 277–288.CrossRefGoogle Scholar
  2. Beitinger, T. L., W. A. Bennett & R. W. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.CrossRefGoogle Scholar
  3. Blenckner, T., 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533: 1–14.CrossRefGoogle Scholar
  4. Bowen, L., I. Werner & M. L. Johnson, 2006. Physiological and behavioral effects of zinc and temperature on coho salmon (Oncorhynchus kisutch). Hydrobiologia 559: 161–168.CrossRefGoogle Scholar
  5. Cairns, M. A., J. L. Ebersole, J. P. Baker, P. J. Wigington, H. R. Lavigne & S. M. Davis, 2005. Influence of summer stream temperatures on black spot infestation of juvenile coho salmon in the Oregon Coast Range. Transactions of the American Fisheries Society 134: 1471–1479.CrossRefGoogle Scholar
  6. Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.CrossRefGoogle Scholar
  7. Cameron, A. C. & F. A. Windemeijer, 1996. R-squared measures for count data regression models with applications to health-care utilization. Journal of Business and Economic Statistics 14: 209–219.CrossRefGoogle Scholar
  8. Campbell, C. A., 1999. Assessing large-scale patterns in the distribution, abundance, and size of juvenile Atlantic salmon in the Connecticut River. M.S. Thesis, University of Massachusetts, Amherst, MA.Google Scholar
  9. Carle, F. L. & M. R. Strub, 1978. A new method for estimating population size from removal data. Biometrics 34: 621–630.CrossRefGoogle Scholar
  10. Connecticut River Atlantic Salmon Commission, 1998. Strategic plan for the restoration of Atlantic salmon to the Connecticut River (revised July 1, 1998). Sunderland, MA.Google Scholar
  11. Crozier, L. & R. W. Zabel, 2006. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. Journal of Animal Ecology 75: 1100–1109.PubMedCrossRefGoogle Scholar
  12. Cunjak, R. A., D. Caissie, N. El-Jabi, P. Hardie, J. H. Conlon, T. L Pollock, D. J. Giberson & S. Komadina-Douthwright, 1993. The Catamaran Brook (New Brunswick) habitat research project: biological, physical, and chemical conditions (1990–1992). Canadian Technical Report of Fisheries and Aquatic Sciences No. 1914.Google Scholar
  13. Currie, R. J., W. A. Bennett, T. L. Beitinger & D. S. Cherry, 2004. Upper and lower temperature tolerances of juvenile freshwater game-fish species exposed to 32 days of cycling temperatures. Hydrobiologia 523: 127–136.CrossRefGoogle Scholar
  14. Davis, M. W., B. L. Olla & C. B. Schreck, 2001. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: lack of concordance between mortality and physiological measures of stress. Journal of Fish Biology 58: 1–15.CrossRefGoogle Scholar
  15. Dunham, J., R. Schroeter & B. Rieman, 2003. Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams. North American Journal of Fisheries Management 23: 1042–1049.CrossRefGoogle Scholar
  16. Dynesius, M. & C. Nilsson, 1994. Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science 266: 753–762.PubMedCrossRefGoogle Scholar
  17. Eaton, J. G., J. H. McCormick, B. E. Goodno, D. G. O’Brien, H. G. Stefany, M. Hondzo & R. M. Scheller, 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20(4): 10–18.CrossRefGoogle Scholar
  18. Eaton, J. G. & R. M. Scheller, 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography 41: 1109–1115.CrossRefGoogle Scholar
  19. Elliott, J. M., 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon. Freshwater Biology 25: 61–70.CrossRefGoogle Scholar
  20. Elliott, J. M. & J. A. Elliott, 1995. The effect of the rate of temperature increase on the critical thermal maximum for parr of Atlantic salmon and brown trout. Journal of Fish Biology 47: 917–919.CrossRefGoogle Scholar
  21. Elliott, J. M. & M. A. Hurley, 1997. A functional model for maximum growth of Atlantic salmon par (Salmo salar), from two populations in northwest England. Functional Ecology 11: 592–603.CrossRefGoogle Scholar
  22. Flebbe, P. A., L. D. Roghair & J. L. Bruggink, 2006. Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society 135: 1371–1382.CrossRefGoogle Scholar
  23. Forseth, T., M. A. Hurley, A. J. Jensen & J. M. Elliott, 2001. Functional models for growth and food consumption of Atlantic salmon parr, Salmo salar, from a Norwegian River. Freshwater Biology 46: 173–186.CrossRefGoogle Scholar
  24. Franco, E. A. D. & P. Budy, 2005. Effects of biotic and abiotic factors on the distribution of trout and salmon along a longitudinal stream gradient. Environmental Biology of Fishes 72: 379–391.CrossRefGoogle Scholar
  25. Fry, F. E. J., 1967. Responses of vertebrate poikilotherms to temperature. In Rose, A. H. (ed.), Thermobiology. Academic Press, New York, NY: 375–409.Google Scholar
  26. Galbreath, P. F., N. D. Adams & T. H. Martin, 2004. Influence of heating rate on measurement of time to thermal maximum in trout. Aquaculture 241: 587–599.CrossRefGoogle Scholar
  27. Gardner, B., P. J. Sullivan & A. J. Lembo, 2003. Predicting stream temperatures: geostatistical model comparison using alternative distance metrics. Canadian Journal of Fisheries and Aquatic Sciences 60: 344–351.CrossRefGoogle Scholar
  28. Garside, E. T., 1973. Ultimate upper lethal temperature of Atlantic salmon, Salmo salar. Canadian Journal of Zoology 51: 898–900.PubMedGoogle Scholar
  29. Gooseff, M. N., K. Strzepek & S. C. Chapra, 2005. Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, Lower Madison River, MT. Climatic Change 68: 331–353.CrossRefGoogle Scholar
  30. Grande, M. & S. Andersen, 1991. Critical thermal maxima for young salmonids. Journal of Freshwater Ecology 6: 275–279.Google Scholar
  31. Habit, E., M. C. Belk & O. Parra, 2007. Response of the riverine fish community to the construction and operation of a diversion hydropower plant in central Chile. Aquatic Conservation-Marine and Freshwater Ecosystems 17: 37–49.CrossRefGoogle Scholar
  32. Heath, S. T., W. A. Bennett, J. Kennedy & T. L. Beitinger, 1994. Heat and cold tolerance of the fathead minnow, Pimephales promelas, exposed to the synthetic pyrethroid cyfluthrin. Canadian Journal of Fisheries and Aquatic Sciences 51: 437–440.CrossRefGoogle Scholar
  33. Huntsman, A. G., 1942. Death of salmon and trout with high temperature. Journal of the Fisheries Research Board of Canada 5: 485–501.Google Scholar
  34. Isaak, D. J. & W. A. Hubert, 2004. Nonlinear response of trout abundance to summer stream temperatures across a thermally diverse montane landscape. Transactions of the American Fisheries Society 133: 1254–1259.CrossRefGoogle Scholar
  35. Johnson, S. L., 2004. Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Canadian Journal of Fisheries and Aquatic Sciences 61: 913–923.CrossRefGoogle Scholar
  36. Johnstone, H. C. & F. J. Rahel, 2003. Assessing temperature tolerance of Bonneville cutthroat trout based on constant and cycling thermal regimes. Transactions of the American Fisheries Society 132: 92–99.CrossRefGoogle Scholar
  37. Jonsson, B., T. Forseth, A. J. Jensen & T. J. Naesje, 2001. Thermal performance of juvenile Atlantic salmon, Salmo salar L. Functional Ecology 15: 701–711.CrossRefGoogle Scholar
  38. Kangur, A., P. Kangur, K. Kangur & T. Mols, 2007. The role of temperature in the population dynamics of smelt Osmerus eperlanus eperlanus m. spirinchus Pallas in Lake Peipsi (Estonia/Russia). Hydrobiologia 584: 433–441.CrossRefGoogle Scholar
  39. Keleher, C. J. & F. J. Rahel, 1996. Thermal limits to salmonid distributions in the Rocky Mountain region and potential habitat loss due to global warming: a Geographic Information System (GIS) approach. Transactions of the American Fisheries 125: 1–13.CrossRefGoogle Scholar
  40. Kishi, D., M. Murakami, S. Nakano & Y. Taniguchi, 2004. Effects of forestry on the thermal habitat of Dolly varden (Salvelinus malma). Ecological Research 19: 283–290.CrossRefGoogle Scholar
  41. Lobón-Cerviá, J. & E. Mortensen, 2005. Population size in stream-living juveniles of lake-migratory brown trout Salmo trutta L.: the importance of stream discharge and temperature. Ecology of Freshwater Fishes 14: 394–401.CrossRefGoogle Scholar
  42. Lund, S. G., D. Caissie, R. A. Cunjak, M. M. Vijayan & B. L. Tufts, 2002. The effects of environmental heat shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Canadian Journal of Fisheries and Aquatic Sciences 59: 1553–1562.CrossRefGoogle Scholar
  43. McMenemy, J. R., 1995. Survival of Atlantic salmon fry stocked at low density in the West River, Vermont. North American Journal of Fisheries Management 15: 366–374.CrossRefGoogle Scholar
  44. Meeuwig, M. H., J. B. Dunham, J. P. Hayes & G. L. Vinyard, 2004. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes. Ecology of Freshwater Fish 13: 208–216.CrossRefGoogle Scholar
  45. Meisner, J. D., 1990. Effect of climatic warming on the southern margins of the native range of brook trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 47: 1065–1070.Google Scholar
  46. Mesa, M. G., 1994. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon. Transactions of the American Fisheries Society 123: 786–793.CrossRefGoogle Scholar
  47. Meyer, J. S., D. D. Gulley, M. S. Goodrich, D. C. Szmania & A. S. Brooks, 1995. Modeling toxicity due to intermittent exposure of rainbow trout and common shiners to monochloramine. Environmental Toxicology and Chemistry 14: 165–175.CrossRefGoogle Scholar
  48. Meyers, T. F., 1994. The program to restore Atlantic salmon to the Connecticut River. In Calabi, S. & A. Stout (eds), A Hard Look at Some Tough Issues. New England Atlantic Salmon Management Conference, New England Salmon Commission, Newburyport, MA: 11–21.Google Scholar
  49. Moffitt, C. M., B. Kynard & S. G. Rideout, 1982. Fish passage facilities and anadromous fish restoration in the Connecticut River basin. Fisheries 7(6): 2–11.Google Scholar
  50. Morgan, I. J., D. G. McDonald & C. M. Wood, 2001. The cost of living for freshwater fish in a warmer, more polluted world. Global Change Biology 7: 345–355.CrossRefGoogle Scholar
  51. Myers, R. H., 1990, Classical and Modern Regression with Applications. Duxbury Press, Pacific Grove, CA.Google Scholar
  52. Nelitz, M. A., E. MacIssac, R. Peterman, 2007. A science based approach for identifying temperature sensitive streams for rainbow trout. North American Journal of Fisheries Management 27: 405–424.CrossRefGoogle Scholar
  53. Parrish, D. L., R. J. Benke, S. G. Gephard, S. McCormick & G. H. Reeves, 1998. Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences 55(Supplement 1): 281–287.CrossRefGoogle Scholar
  54. Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.PubMedCrossRefGoogle Scholar
  55. Poff, L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. Richter, R. Sparks & J. Stromberg, 1997. The natural flow regime: a new paradigm for riverine conservation and restoration. BioScience 47: 769–784.CrossRefGoogle Scholar
  56. Poole, G. C. & C. H. Berman, 2004. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management 27: 787–802.CrossRefGoogle Scholar
  57. Pörtner, H. O. & R. Knust, 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95–97.PubMedCrossRefGoogle Scholar
  58. Preston, B. L., 2006. Risk-based reanalysis of the effects of climate change on US cold-water habitat. Climatic Change 76: 91–119.CrossRefGoogle Scholar
  59. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.Google Scholar
  60. Raffenberg, M. J. & D. L. Parrish, 2003. Atlantic salmon and trout: interactions of species at large scales. Canadian Journal of Fisheries and Aquatic Sciences 60: 279–285.CrossRefGoogle Scholar
  61. SAS Institute, 2003. SAS 9.1. Cary, North Carolina.Google Scholar
  62. Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries And Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  63. Schmidt-Nielsen, J., 1990. Animal Physiology: Adaptation and Environment. Cambridge University Press, Cambridge, England.Google Scholar
  64. Schrank, A. J., F. J. Rahel & H. C. Johnstone, 2003. Evaluating laboratory-derived thermal criteria in the field: an example involving Bonneville cutthroat trout. Transactions of the American Fisheries Society 132: 100–109.CrossRefGoogle Scholar
  65. Stoneman, C. L. & M. L. Jones, 2000. The influence of habitat features on the biomass and distribution of three species of southern Ontario stream salmonines. Transactions of the American Fisheries Society 129: 639–657.CrossRefGoogle Scholar
  66. Union of Concerned Scientists (UCS), 2006. Climate Change in the U.S. Northeast UCS Publications, Cambridge, MA.Google Scholar
  67. Wang, L. Z., J. Lyons & P. Kanehl, 2003. Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society 132: 825–839.CrossRefGoogle Scholar
  68. Watenpaugh, D. E., T. L. Beitinger & D. W. Huey, 1985. Temperature tolerance of nitrite-exposed channel catfish. Transactions of the American Fisheries Society 114: 274–278.CrossRefGoogle Scholar
  69. Wehrly, K. E., L. Wang & M. Mitro, 2007. Field based estimates of thermal tolerance limits for trout incorporating exposure time and temperature fluctuations. Transactions of the American Fisheries Society 136: 365–374.CrossRefGoogle Scholar
  70. Welsh, H. H., F. R. Hodgson, B. C. Harvey & M. F. Roche, 2001. Distribution of juvenile coho salmon in relation to water temperatures in tributaries of the Mattole River, California. North American Journal of Fisheries Management 21: 464–470.CrossRefGoogle Scholar
  71. Wheeler, A. P., P. L. Angermeier & A. E. Rosenberger, 2005. Impacts of new highways and subsequent landscape urbanization on stream habitat and biota. Reviews in Fisheries Science 13: 141–164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Martha E. Mather
    • 1
  • Donna L. Parrish
    • 2
  • Cara A. Campbell
    • 3
  • James R. McMenemy
    • 4
  • Joseph M. Smith
    • 5
  1. 1.U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA
  2. 2.U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit, The Rubenstein School of Environment and Natural Resources, 312 Aiken CenterUniversity of VermontBurlingtonUSA
  3. 3.U.S. Geological Survey, Leetown Science CenterNorthern Appalachian Research BranchWellsboroUSA
  4. 4.Vermont Department of Fish and WildlifeSpringfieldUSA
  5. 5.Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA

Personalised recommendations