, Volume 599, Issue 1, pp 23–30 | Cite as

Water level changes in a large shallow lake as reflected by the plankton:periphyton-ratio of sedimentary diatoms

  • Atko HeinsaluEmail author
  • Helen Luup
  • Tiiu Alliksaar
  • Peeter Nõges
  • Tiina Nõges
ELLS 2007


Biostratigraphic diatom analyses were carried out on a short sediment core from the large shallow-water Lake Võrtsjärv, Estonia, in order to relate the diatom composition to the instrumental water level record. We dated the sediment core by radiometric methods (210Pb, 137Cs, 241Am) and spheroidal fly-ash particle abundance chronology and evaluated the statistical significance of the relationships between the percentage of planktonic diatoms and the water level continuously monitored since 1871. Before the 1960s, the percentage of planktonic diatoms in the sediment showed quite strong positive relationship to water level. The impact of eutrophication after the 1960s presumably masked the influence of water level changes on the diatom community. In addition, statistical analysis of the upper part of the sediment core (1970—present day) together with measured limnological parameters of the lake showed that water transparency had the strongest influence on diatoms, while temperature, pH and alkalinity had lesser impacts. Our study shows that the planktonic:periphytic diatom ratio in the sediment can be used to track overall trends of the lake-level changes in Lake Võrtsjärv before the onset of cultural eutrophication; however, the results have to be interpreted carefully, taking into consideration other possible limnological factors such as water transparency, nutrients and wind.


Paleolimnology Sediment diatoms Water level changes Lake Võrtsjärv Estonia 



Funding for this research was provided by the Estonian Ministry of Education (SF0362480s03 and SF0332710s06), by Estonian Science Foundation grants (5738 and 5923), and by the European Union project CLIME (EVK1-CT-2002-00121).


  1. Alliksaar, T., 2000. Spatial and temporal variability of the distribution of spherical fly-ash particles in sediments in Estonia. Tallinn Pedagogical University, Dissertations on Natural Sciences 4: 1–44.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  3. Barker, P. A., N. Roberts, H. F. Lamb, S. van den Kaars & A. Benkaddour, 1994. Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. Journal of Paleolimnology 12: 223–234.CrossRefGoogle Scholar
  4. Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester: 527–570.Google Scholar
  5. Battarbee, R., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht: 155–202.Google Scholar
  6. Chatfield, C., 1996. The Analysis of Time Series, 5th edn. Chapman & Hall, New York.Google Scholar
  7. Clarke, G., M. Kernan, A. Marchetto, S. Sorvari & J. Catalan, 2005. Using diatoms to assess geographical patterns of change in high-altitude European lakes from pre-industrial times to the present day. Aquatic Sciences 67: 224–236.Google Scholar
  8. Glew, J. R., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Vol. 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht: 73–105.Google Scholar
  9. Heinsalu, A., T. Alliksaar, A. Leeben & T. Nõges, 2007. Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia). Hydrobiologia 584: 133–143.CrossRefGoogle Scholar
  10. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  11. Hyvärinen, H. & P. Alhonen, 1994. Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. The Holocene 4: 251–258.CrossRefGoogle Scholar
  12. Järvet, A., 2004. Hydrology of Lake Võrtsjärv. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 105–139.Google Scholar
  13. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Vol. 2(1–4). Gustav Fischer Verlag, Stuttgart.Google Scholar
  14. Nõges, T., 2004. Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Stream Position Index in the hydrology and phytoplankton of Võrtsjärv, a large, shallow lake in Estonia. Boreal Environment Research 9: 401–407.Google Scholar
  15. Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408–409: 277–283.CrossRefGoogle Scholar
  16. Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.Google Scholar
  17. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506–509: 257–263.CrossRefGoogle Scholar
  18. Nõges, P., L. Tuvikene, T. Nõges & A. Kisand, 1999. Primary production, sedimentation and resuspension in large shallow Lake Võrtsjärv. Aquatic Sciences 61: 168–182.CrossRefGoogle Scholar
  19. Pork, M. & V. Kõvask, 1973. Vetikad. In Timm, T. (ed.), Võrtsjärv. Valgus, Tallinn: 95–99 (In Estonian with English summary).Google Scholar
  20. Rose, N. L., 1990. A method for the selective removal of inorganic ash particles from lake sediments. Journal of Paleolimnology 4: 61–67.CrossRefGoogle Scholar
  21. StatSoft, Inc., 2001. STATISTICA (data analysis software system), version 6.
  22. Stoermer, E. F. & J. P. Smol (eds), 1999. The Diatoms: Application for the Environmental and Earth Sciences. University Press, Cambridge.Google Scholar
  23. Stone, J. R. & S. C. Fritz, 2004. Three-dimensional modeling of lacustrine diatom habitat areas: Improving paleolimnological interpretation of planktic:benthic ratios. Limnology and Oceanography 49: 1540–1548.CrossRefGoogle Scholar
  24. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference manual and CanoDraw for Windows Users guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York.Google Scholar
  25. Vassiljev, J., 1997. Simulating the paleorecord of northern European lakes using a coupled lake catchment model. Lundqua Thesis 41: 1–19.Google Scholar
  26. Wetzel, R. G., 1983. Limnology. Saunders College Publishing, Philadelphia.Google Scholar
  27. Wolin, J. A., 1996. Late Holocene lake-level and lake development signals in Lower Herring Lake, Michigan. Journal of Paleolimnology 15: 19–45.CrossRefGoogle Scholar
  28. Wolin, J. A. & H. C. Duthie, 1999. Diatoms as indicators of water level changes in freshwater lakes. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Application for the Environmental and Earth Sciences. University Press, Cambridge: 183–202.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Atko Heinsalu
    • 1
    Email author
  • Helen Luup
    • 2
  • Tiiu Alliksaar
    • 1
  • Peeter Nõges
    • 2
    • 3
  • Tiina Nõges
    • 2
  1. 1.Institute of GeologyTallinn University of TechnologyTallinnEstonia
  2. 2.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannu, TartumaaEstonia
  3. 3.Institute for Environment and SustainabilityEuropean Commission – Joint Research CentreIspra (VA)Italy

Personalised recommendations