Skip to main content
Log in

Variability of bio-optical parameters in two North-European large lakes

  • ELLS 2007
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The bio-optical properties of some North-European large lakes were examined during 1995–2005 using field data and laboratory measurements. The key variables were optically active substances (OAS: chlorophyll, total suspended matter and dissolved organic matter), Secchi depth, and the “spectrometric” and diffuse light attenuation coefficients. Our main study sites were Lake Peipsi and Lake Võrtsjärv in Estonia, both eutrophic with mean Secchi depth below 3 m. The measured water parameters were compared with those obtained from two clear-water Swedish lakes, Lake Vänern and Lake Vättern. This comparison describes the bio-optical differences of the water in eutrophic and oligotrophic lakes. The variability of water parameters in the turbid Estonian lakes was rather high, e.g. the chlorophyll content varied from 1.8 to 102 mg m−3 and the diffuse light attenuation coefficient from 0.92 to 6.5 m−1. The change in water properties depends on the season and the biological activity of phytoplankton. We found no apparent long-time trend in water properties. Regression analysis showed that in the turbid Estonian lakes the optical properties were well correlated with chlorophyll and suspended matter, but not with dissolved organic matter. The highest determination coefficients (between 0.73 and 0.89) were obtained when the optical parameters were correlated with all three OAS together (multiple regressions). Our results concerning the variability and interconnections among bio-optical parameters in two Estonian large lakes illustrate the effect of OAS and light field on the ecological conditions of lakes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arst, H., 2003. Optical Properties and Remote Sensing of Multicomponental Water Bodies. Springer, Praxis Publishing, Chichester, UK: 231.

  • Bricaud, A., C. Roesler & J. R. V. Zanevald, 1995. In situ methods for measuring the inherent optical properties of ocean waters. Limnology and Oceanography 40: 393–410.

    Article  Google Scholar 

  • Dall’Olmo, G. & A. A. Gitelson, 2005. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Applied Optics 44: 412–422.

    Article  PubMed  Google Scholar 

  • Darecki, M. & D. Stamski, 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment 89: 326–350.

    Article  Google Scholar 

  • Davies-Colley, R. J. & W. N. Vant, 1988. Estimates of optical properties of water from Secchi disk depths. Water Resources Bulletin 24: 1329–1335.

    Google Scholar 

  • Dokulil, M. & K. Teubner, 2003. Klimaeinfüsse auf Seen in Europe (CLIME). Österreichs Fischerei 56: 176–180.

    Google Scholar 

  • Erm, A., H. Arst, P. Nõges, T. Nõges, A. Reinart & L. Sipelgas, 2002. Temporal variations in bio-optical properties of four North Estonian lakes in 1999–2000. Geophysica 38: 89–111.

    Google Scholar 

  • ESS method 340.2, 1993. Total suspended solids, mass balance (dried at 103–105° C), volatile suspended solids (Ignited at 550° C). Environmental Sciences Section, ESS 3: 189–192.

    Google Scholar 

  • Goldman, C. R., 1988. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe, California-Nevada. Limnology and Oceanography 33: 1321–1333.

    CAS  Google Scholar 

  • ISO 10260, 1992 (E). Water Quality – Measurement of Biochemical Parameters – Spectrophotometric Determination of Chlorophyll-a Concentration. Geneva, Switzerland: ISO: 1–6.

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. University Press, Cambridge: 509.

    Google Scholar 

  • Koenings, J. P. & J. A. Edmundson, 1991. Secchi disk and photometers estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity. Limnology and Oceanography 36: 91–105.

    Google Scholar 

  • Kutser, T., A. Herlevi, K. Kallio & H. Arst, 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. The Science of the Total Environment 268: 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Kutser, T., D. Pierson, K. Kallio, A. Reinart & S. Sobek, 2005. Mapping lake CDOM by satellite remote sensing. Remote Sensing of Environment 94: 534–540.

    Article  Google Scholar 

  • Kutser, T., E. Vahtmäe & G. Martin, 2006. Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuarine Coastal and Shelf Science 67: 521–529.

    Article  Google Scholar 

  • Laugaste, R. & V. Yastremskij, 2000. Role of inflows in the phytoplankton compositions of lake Peipsi. Proceedings of the Estonian Academy of Sciences. Biology, Ecology 49: 19–33.

    Google Scholar 

  • Lindell T., D. Pierson, G. Premazzi & E. Ziliolli (eds), 1999. Manual for Monitoring European Lakes Using Remote Sensing Techniques. Office for Official Publications of the European Communities, Luxembourg: 161.

    Google Scholar 

  • Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnology and Oceanography 34: 856–867.

    Article  CAS  Google Scholar 

  • Metsamaa, L., T. Kutser & N. Strömbeck, 2006. Recognising cyanobacterial blooms based on their optical signature: a modelling study. Boreal Environment Research 11: 493–506.

    CAS  Google Scholar 

  • Nõges, T. (ed.), 2001. Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, Estonia: 163.

    Google Scholar 

  • Pierson, D. C. & N. Strömbeck, 2000. A Modelling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish Great Lakes. Geophysica 36: 177–202.

    Google Scholar 

  • Rae, R., C. Howard-Williams, I. Hawes, A.-M. Schwarz & W. F. Vincent, 2001. Penetration of solar ultraviolet radiation into New Zealand lakes: Influence of dissolved organic carbon and catchment vegetation. Limnology 2: 79–89.

    Article  CAS  Google Scholar 

  • Reinart, A. & P. Nõges, 2004. Light conditions in lake Võrtsjärv. In Haberman J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn: 141–149.

    Google Scholar 

  • Reinart, A., B. Paavel, D. Pierson & N. Strombeck, 2004. Inherent and apparent optical properties of Lake Peipsi, Estonia. Boreal Environment Research 9: 429–445.

    Google Scholar 

  • Schiller, H. & R. Doerffer, 1999. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. International Journal Remote Sensing 20: 1735–1746.

    Article  Google Scholar 

  • Schindler, D. W., K. W. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effect of climatic warming on lakes of central boreal forest. Science 250: 967–970.

    Article  PubMed  CAS  Google Scholar 

  • Sipelgas, L., H. Arst, K. Kallio., A. Erm, P. Oja & T. Soomere, 2003. Optical properties of dissolved organic matter in Finnish and Estonian lakes. Nordic Hydrology 34: 361–386.

    CAS  Google Scholar 

  • Vincent, W. F., I. Laurion & R. Pienitz, 1998. Artic and Antarctic lakes as optical indicators of global change. Antarctic Glaciology 27: 691–696.

    CAS  Google Scholar 

  • Willén, E., 2001. Four decades of research on the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern: the significance of monitoring and remedial measures for a sustainable society. Ambio 30: 458–466.

    Article  PubMed  Google Scholar 

  • Zaneweld, J. R. V., J. C. Kitchen, A. Bricaud & C. Moore, 1992. Analysis of in situ spectral absorption meter data. In Ocean Optics II. Proceedings SPIE 1750: 187–200 (In Russian).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Estonian Science Foundation (Grants 5594, 6814, 5738) and to the Estonian Marine Institute for financial support of this investigation. We also are grateful to Ants Erm, Liis Sipelgas and Medhat Hussainov for assistance in fieldwork and to Dr. Tiina Nõges (Centre for Limnology, Estonia) for Lake Peipsi data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgot Paavel.

Additional information

Guest editors: T. Nõges, R. Eckmann, K. Kangur, P. Nõges, A. Reinart, G. Roll, H. Simola & M. Viljanen

European Large Lakes—Ecosystem changes and their ecological and socioeconomic impacts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paavel, B., Arst, H. & Reinart, A. Variability of bio-optical parameters in two North-European large lakes. Hydrobiologia 599, 201–211 (2008). https://doi.org/10.1007/s10750-007-9200-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9200-4

Keywords

Navigation