, Volume 599, Issue 1, pp 143–152 | Cite as

Plant-associated invertebrates and hydrological balance in the large volcanic Lake Bracciano (Central Italy) during two years with different water levels

  • Luciana MastrantuonoEmail author
  • Angelo G. Solimini
  • Peeter Nõges
  • Marcello Bazzanti
ELLS 2007


Lakes in the Mediterranean region experience an altered hydrological balance with large water level reductions and/or fluctuations within and between years. To date, little is known about the reaction of invertebrate assemblages inhabiting the littoral zone to water level changes in natural lakes. Here, we present the case of the volcanic Lake Bracciano, one of the largest and deepest Italian lakes. We compared the numerical composition and taxonomic richness of plant-associated invertebrate assemblages sampled from three sites and three depth ranges (0–4 m, 4–8 m and 8–15 m) between years with different water levels. Using historical data, we built a hydrological balance model to assess the role of different water budget components on the water levels. The hydrological balance showed that the volume of water currently abstracted for human use exceeds the potential changes caused by the projected warming of climate and decreasing amount of precipitation by nearly an order of magnitude. In a low water level year, littoral macrophytes and invertebrate assemblages exhibited qualitative and quantitative differences at all sampling sites and depths. The invertebrate assemblage showed a reduced taxonomic richness and lower numerical abundance of the more sessile forms (water mites, gastropods, nematodes, naidid oligochaetes), which feed directly on living plants or epiphytic algae, and an increase of more mobile and/or detritivore taxa.


Littoral zone Macrophytes Climatic change Mediterranean region 



We thank G. Free and three anonymous referees for helpful comments on an early draft.


  1. Boni, C., P. Bono & G. Capelli, 1986. Schema idrogeologico dell’Italia centrale. Memorie della Società Geologica Italiana 35: 991–1012.Google Scholar
  2. Bruno, G., 1985. Bracciano sewerage system amd sewage treatment plant automatic control. Proceedings of the International Congress “Lakes pollution and recovery” (ANDIS), Roma: 194–198.Google Scholar
  3. Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C. G. Menéndez, J. Räisänen, A. Rinke, A. Sarr & P. Whetton, 2007. Regional Climate Projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: 849–940.Google Scholar
  4. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd edn, Primer-E, Plymouth.Google Scholar
  5. Coops, H. & G. van der Velde, 1995. Seed dispersal, germination, and seedling growth of six helophyte species in relation to water-level zonation. Freshwater Biology 34: 13–20.CrossRefGoogle Scholar
  6. Cummins, K. W. & M. A. Wilzbach, 1985. Field procedures for analysis of functional feeding groups of stream invertebrates. Appalachian Environmental Laboratory, University of Maryland, Frostburg, Contr. No. 1611.Google Scholar
  7. Dragoni, W., 1998. Some considerations on Climatic Changes, Water Resources and Water Needs in the Italian Region South 43°N. In Brown, N. & A. Issar (eds), Water, environment and society in times of climatic change. Kluwer: 241–271.Google Scholar
  8. Dragoni, W. & D. Valigi, 1994. Contributo alla stima dell’evaporazione dalle superfici liquide nell’Italia Centrale. Geologica Romana 30: 151–158.Google Scholar
  9. Dragoni, W., F. Lotti, V. Piscopo & A. Sibi, 2002. Bilancio idrogeologico del lago di Vico (Lazio - Italia). Proceedings of the international conference Residence time in lakes: Science, Mangement, Education. Bolsena, Viterbo: 96–104.Google Scholar
  10. Dragoni, W., V. Piscopo, L. Di Matteo, L. Gnucci, A. Leone, F. Lotti, M. Melillo & M. Petitta, 2006. Risultati del progetto di ricerca PRIN laghi 2003–2005. Giornale di Geologia Applicata 3: 39–46.Google Scholar
  11. Furey, P. C., R. N. Nordin & A. Mazumder, 2006. Littoral benthic invertebrates under contrasting drawdown in a reservoirs and a natural lake. Journal of North American Benthological Society 25: 19–31.CrossRefGoogle Scholar
  12. Gaggino, G. F., R. Marchetti, E. Cappelletti & T. Calcagnini, 1985. La qualità delle acque dei laghi italiani negli anni ‘80. Atti Congresso Internazionale EWPCA, Andis ed.: 5–44.Google Scholar
  13. Grimås, U., 1962. The effect of increased water level fluctuation upon the bottom fauna in Lake Blåsjön, Northern Sweden. Institute of Freshwater Research Drottningholm Report 44: 14–41.Google Scholar
  14. Haas, L., 2002. Mediterranean water resources planning and climate change adaptation. Water, Wetlands and Climate Change: Building Linkages for their Integrated Management. Mediterranean Regional Roundtable, Athens, Greece, December 10–11, 2002. 62 pp.Google Scholar
  15. Hamabata, E. & Y. Kobayashi, 2002. Present status of submerged macrophyte growth in Lake Biwa: recent recovery following a summer decline in the water level. Lakes & Reservoirs: Research and Managements 7: 331–338.CrossRefGoogle Scholar
  16. Hellsten, S., M. Marttunen, R. Palomäki, J. Riihimäki & E. Alasaarela, 1996. Towards an ecologically-based regulation practice in Finnish hydroelectric lakes. Regulated Rivers: Research & Management 12: 535–545.CrossRefGoogle Scholar
  17. Hellsten, S., 2001. Effects of lake water level regulation on aquatic macrophyte stands in northern Finland and options to predict these impacts under varying conditions. Acta Botanica Fennica 171: 1–47.Google Scholar
  18. Hellsten, S. & B. Dudley, 2006. Hydromorphological pressures in lakes. In A. G. Solimini, A-S. Heiskanen & A. C. Cardoso (eds), Indicators and methods for the ecological status assessment under the Water Framework Directive. European Commission, EUR 22314 EN, Ispra: 135–140.Google Scholar
  19. Hill, N. M., P. A. Keddy & I. C. Wisheu, 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723–736.PubMedCrossRefGoogle Scholar
  20. Hutchinson, G. E., 1993. A treatise on limnology. IV. The Zoobenthos. Wiley & Sons, Inc.Google Scholar
  21. Jeppesen, E. M., M. Sondergaard, M. Sondergaard & K. Christoffersen, 1998. The structuring role of submerged macrophytes in lakes. Springer, New York: 452.Google Scholar
  22. Lodge, D. M. & P. Kelly, 1985. Habitat disturbance and the stability of freshwater gastropod populations. Oecologia 68: 111–117.CrossRefGoogle Scholar
  23. Margaritora, F. G., M. Bazzanti, O. Ferrara, L. Mastrantuono, M. Seminara & D. Vagaggini, 2003. Classification of the ecological status of volcanic lakes in Central Italy. Journal of Limnology 62: 49–59.Google Scholar
  24. Martini, P., 1985. The project CO.B.I.S. plants. Proceedings of the international congress, “Lakes pollution and recovery” (ANDIS), Roma: 194–198.Google Scholar
  25. Mastrantuono, L., 1987. Invertebrate community in the littoral regulated area of a hydroelectric lake-reservoir (Lake Campotosto, Central Italy). Rivista di Idrobiologia 26: 17–32.Google Scholar
  26. Mastrantuono, L. & T. Mancinelli, 2005. Littoral zoobenthos associated with aquatic plants and bioassessment of ecological status in Lake Bracciano (Central Italy). Journal of Limnology 64: 43–53.Google Scholar
  27. Merritt R. W. & K. W. Cummins, (eds), 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque, USA: 862.Google Scholar
  28. Økland, J., 1983. Factors regulating the distribution of fresh-water snails (Gastropoda) in Norway. Malacologia 24: 277–288.Google Scholar
  29. Pagnotta, R., D. Copetti & G. Tartari, 2002. Trophic classification of the main lakes of central Italy. Proceedings of the international conference Residence time in lakes: Science, Mangement, Education. Bolsena, Viterbo: 129–137.Google Scholar
  30. Palomäki, R., 1994. Response by macrozoobenthos biomass to water level regulation in some Finnish lake littoral zones. Hydrobiologia 286: 17–26.CrossRefGoogle Scholar
  31. Savage, A. A. & D. L. Beaumont, 1997. A comparison of the benthic macroinvertebrate communities of a lowland lake, Oak Mere, in 1980 and 1994. Archiv für Hydrobiologie 139: 197–206.Google Scholar
  32. Tronstad, L. M., P. Bryan, P. Tronstad & A. C. Benke, 2005. Invertebrate responses to decreasing water levels in a subtropical river floodplain wetland. Wetlands 25: 583–593.CrossRefGoogle Scholar
  33. Turc, L., 1963. Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Annales Agronomiques 12: 13–49.Google Scholar
  34. Van Geest, G. J., H. Coops, M. M. Roijackers, A. D. Buijse & M. Scheffer, 2005a. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. Journal of Applied Ecology 42: 251–260.CrossRefGoogle Scholar
  35. Van Geest, G. J., H. Wolters, F. C. J. M. Roozen, H. Coops, M. M. Roijackers, A. D. Buijse & M. Scheffer, 2005b. Water-level fluctuation affect macrophyte richness in floodplain lakes. Hydrobiologia 539: 239–248.CrossRefGoogle Scholar
  36. Wilcox, D. A. & J. E. Meeker, 1991. Disturbance effects on aquatic vegetation on regulated and unregulated lakes in northern Minnesota. Canadian Journal of Botany 69: 1542–1551.CrossRefGoogle Scholar
  37. Wilcox, D. A. & J. E. Meeker, 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Luciana Mastrantuono
    • 1
    Email author
  • Angelo G. Solimini
    • 2
  • Peeter Nõges
    • 2
  • Marcello Bazzanti
    • 1
  1. 1.Department of Animal and Human BiologyUniversity “La Sapienza”RomeItaly
  2. 2.European CommissionJoint Research Centre, Institute for Environment and SustainabilityIspraItaly

Personalised recommendations