Abstract
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both phytoplankton and bacterioplankton biomass and activity along the estuary. While in the Northern region phytoplankton is light-limited, with mean phytoplankton production (PP) between 1.1 and 1.9 μg C l−1 h−1 and mean specific growth rates (PSG) between 0.14 and 0.16 d−1, the Southern region registered values as high as 24.7 μg C l−1 h−1 for PP and 2.45 d−1 (mean PP between 3.4 and 7.3 μg C l−1 h−1; mean PSG between 0.28 and 0.57 d−1). On the other hand, maximum bacterial production (BP: 63.8 μg C l−1 h−1) and specific growth rate (BSG: 32.26 d−1) were observed in the Northern region (mean BP between 3.4 and 12.8 μg C l−1 h−1; mean BSG between 1.98 and 6.67 day−1). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (∼45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001).



Similar content being viewed by others
References
Abreu, P. C., B. B. Biddanda & C. Odebrecht, 1992. Bacterial dynamics of the Patos Lagoon. Estuary, Southern Brazil (32°8, 52°W): relationship with phytoplankton production and suspended material. Estuarine, Coastal and Shelf Science 35: 621–635.
Admiraal, W., J. Beukema & F. B. van Es, 1985. Seasonal fluctuations in the biomass and metabolic activity of bacterioplankton and phytoplankton in a well-mixed estuary: the Ems-Dollard (Wadden Sea). Journal of Plankton Research 7: 877–890.
Albright, L. J. & S. K. McRae, 1987. Annual bacterioplankton biomasses and productivities in a temperate west coast Canadian fjord. Applied and Environmental Microbiology 53: 1277–1285.
Almeida, M. A., M. A. Cunha & F. Alcântara, 2002. Seasonal change in the proportion of bacterial and phytoplankton production along a salinity gradient in a shallow estuary. Hydrobiologia 475/476: 251–262.
Aminot, A. & M. Chaussepied, 1983. Manuel des analyses chimiques en milieu marin. C.N.E.X.O., Brest.
APHA (AMERICAN PUBLIC HEALTH ASSOCIATION, Inc.), 1985. Standard Methods for the Examination of Water and Wastewater, 16th edn. Washington, D.C.
Artigas, L. F., 1998. Seasonal variability in microplanktonic biomasses in the Gironde dilution plume (Bay of Biscay): relative importance of bacteria. Oceanologica Acta 21: 563–580.
Bano, N., M. Nisa, N. Khan, M. Saleem, P. J. Harrison, S. I. Ahmed & F. Azam, 1997. Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River delta, Pakistan. Marine Ecology Progress Series 157: 1–12.
Barrera-Alba, J. J., S. M. F. Gianesella, F. M. P. Saldanha-Corrêa & G. A. O. Moser, 2004. On the determination of a conversion factor from labeled thymidine incorporation by bacteria to cell production in a Sub-tropical estuary: preliminary results. Brazilian Journal of Oceanography 52: 239–243.
Bell, R. T., 1993. Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine. In Kemp P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Inc., Boca Raton, Florida: 495–503.
Bray, G. A., 1960. A simple efficient liquid scintillator for counting aqueous solution in a liquid scintillation counter. Analytical Biochemistry 1: 279–285.
Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos. Fundamentos teóricos métodos de estudo e análises químicas. FAPESP (eds), São Paulo, Brazil.
Cloern, J. E., C. Grenz & L. Vidergar-Lucas, 1995. An empirical model of phytoplankton chlorophyll:carbon ratio. The conversion factor between productivity and growth rate. Limnology and Oceanography 40: 1313–1321.
Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.
Crump, B. C. & J. A. Baross, 1996. Particle-attached bacteria and heterotrophic plankton associated with the Columbia River estuarine turbidity maxima. Marine Ecology Progress Series 138: 265–273.
Crump, B. C., J. A. Baross & C. A. Simenstad, 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquatic Microbial Ecology 14: 7–18.
Ducklow, H. W., 1982. Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during spring tidal destratification in the York River, Virginia, estuary. Limnology and Oceanography 27: 651–659.
Ducklow, H. W. & D. L. Kirchman, 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. Journal of Plankton Research 5: 333–355.
Ducklow, H. W. & D. L. Carlson, 1992. Oceanic bacterial production. In Marshall K. C. (ed), Advances in Microbial Ecology, Vol. 12, Plenum Press, New York: 113–181.
Ducklow, H. W., D. L. Kirchman & H. L. Qhinby, 1992. Determination of bacterioplankton growth rates during the North Atlantic spring phytoplankton bloom. Microbial Ecology 24: 125–144.
Engel, A. & U. Passow, 2001. The carbon and nitrogen content of transparent exopolymer particles (TEP) derived from diatom exudates. Marine Ecology Progress Series 219: 1–10.
Ferreyra, G. A., B. Mostajir, I. R. Schloss, K. Chatila, M. E. Ferrario, P. Sargian, S. Roy, J. Prod’homme & S. Demers, 2006. Ultraviolet-B radiation effects on the structure and function of lower trophic levels of the marine planktonic food web. Photochemistry and Photobiology 82: 887–897.
Findlay, S., M. L. Pace, D. Lints, J. J. Cole, N. F. Caraco & B. Peierls, 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnology and Oceanography 36: 268–278.
Fuhrman, J. A., J. W. Ammerman & F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationships with phytoplankton. Marine Biology 60: 201–207.
Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology 39: 1085–1095.
Furnas, M. J., 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. Journal of Plankton Research 12: 1117–1151.
Gasol, J. M., M. D. Doval, J. Pinhassi, J. Calderón-Paz, N. Guixa-Boixareu, D. Vaqué & C. Pedrós-Alió, 1998. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Marine Ecology Progress Series 164: 107–124.
Gianesella-Galvão, S. M. F., 1982. Standing-Stock and Potential of Phytoplankton Production in the Bay of Santos, Brazil. Boletim do Instituto Oceanográfico 31: 85–94.
Gordon, D. C. Jr., 1969. Examination of methods of particulate organic carbon analysis. Deep-Sea Research 16: 661–665.
Goosen, N. K., P. Van Rijswijk, J. Kromkamp & J. Peene, 1997. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands), Aquatic Microbial Ecology 12: 223–232.
Grasshoff, K., M. Ehrhardt, & K. Kremling, 1983. Methods of Seawater Analysis, 2nd edn. Verlag Chemie, Wienhien.
Griffith, P., F. K. Shiah, K. Gloersen, H. W. Ducklow & M. Fletcher, 1994. Activity and distribution of attached bacteria in Chesapeake Bay. Marine Ecology Progress Series 108: 1–10.
Hoch, M. P. & D. L. Kirchman, 1993. Seasonal and Inter.-annual variability in bacterial production and biomass in a temperate estuary. Marine Ecology Progress Series 98: 283–295.
Iriberri, J., M. Unanue, I. Barcina & L. Egea, 1987. Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters. Applied and Environmental Microbiology 53: 2308–2314.
Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algal and natural phytoplankton. Biochem. Physiol. Planzen (BPP) Bd. 167 S: 191–194.
Jonas, R. B. & J. H. Tuttle, 1990. Bacterioplankton and organic carbon dynamics in the lower mesohaline Chesapeake Bay. Applied and Environmental Microbiology 56: 747–757.
Kormas, K. A., K. Kapiris, M. Thessalou-Legaki & A. Nicolaidou, 1998. Quantitative relationships between phytoplankton, bacteria and protists in Aegean semi-enclosed embayment (Maliakos Gulf, Greece). Aquatic Microbial Ecology 15: 255–264.
Kumari, L. K., P. M. A. Bhattathiri, S. G. P. Matondkar & J. John, 2002. Primary productivity in Mandovi-Zuari estuaries in Goa. Journal of the Marine Biological Association of India 44: 1– 3.
Laanbroek, H. J. & J. C. Verplanke, 1986. Seasonal changes in percentages of attached bacteria enumerated in a tidal and a stagnant coastal basin: relation to bacterioplankton productivity. FEMS Microbiology Ecology 38: 87–98.
Lund, J. W. G., C. Kippling & E. D. Le Gren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.
Mackereth, F. J. H., J. E. Heron, & J. F. Talling (eds), 1978. Water analysis: some revised methods for limnologist. Freshwater Biological Association. n 36. Titus Wilson & Sons Inc., Kendall.
Malone, T. C. & H. W. Ducklow, 1990. Microbial biomass in the coastal plume of Chesapeake Bay: phytoplanktonbacterioplankton relationships. Limnology and Oceanography 35: 296–312.
Manager, R. J., M. L. Pace, P. A. del Giorgio, N. F. Caraco & J. J. Cole, 2004. Longitudinal Spatial Patterns of Bacterial Production and Respiration in a Large River–Estuary: Implications for Ecosystem Carbon Consumption. Ecosystems 8: 1–14.
Mesquita, H. D. S. L., 1994. Planktonic microbial community oxygen consumption rate in Cananéia waters (25°S 48°W), Brazil. Netherlands Journal of Aquatic Ecology 28: 441–451.
Middelburg, J. J. & J. Nieuwenhuize, 2000. Uptake if dissolved inorganic nitrogen in turbid, tidal estuaries. Marine Ecology Progress Series 192: 79–88.
Murrell, M. C., J. T. Hollibaugh, M. W. Silver & P. S. Wong, 1999. Bacterioplankton dynamics in Northern San Francisco Bay: Role of particle association and seasonal freshwater flow. Limnology and Oceanography 44: 295–308.
Murrell, M. C, 2003. Bacterioplankton dynamics in a subtropical estuary: Evidence for substrate limitation. Aquatic Microbial Ecology 32: 239–250.
Odebrecht, C., P. C. Abreu, O. O. Möller Jr., L. F. Niencheski, L. A. Proenca & L. C. Torgan, 2005. Drought effects on pelagic properties in the shallow and turbid Patos Lagoon, Brazil. Estuaries 28: 675–685.
Pan, L. A., J. Zhang & L. H. Zhang, 2007. Picophytoplankton, nanophytoplankton, heterotrohpic bacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal of Plankton Research 29: 187–197.
Passow, U. & A. L. Alldredge, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography 40: 1326–1335.
Pedrós-Aliós, C. & T. D. Brock, 1983. The importance of attachment to particles for planktonic bacteria. Archiv für Hydrobiologie 98: 354–379.
Poole, H. H. & W. R. G. Atkins, 1929. Photo-electric measurements of submarine illumination throughout the year. Journal of Marine Biological Association 16: 297–324.
Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.
Raymond, P. A., J. E. Bauer & J. J. Cole, 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography 45: 1707–1717.
Revilla, M., A. Iriarte, I. Madariaga & E. Orive, 2000. Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperate estuary. Estuarine Coastal and Shelf Science 50: 297–313.
Shiah, F. K. & H. W. Ducklow, 1994. Temperature regulation of heterotrophic bacterioplankton abundance production, and specific growth rate in Chesapeake Bay. Limnology and Oceanography 39:1243–1258.
Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbiological Food Webs 6:107–114.
Staroscik, A. M. & D. C. Smith, 2004. Seasonal patterns in bacterioplankton abundance and production in Narragansett Bay, Rhode Island, USA. Aquatic Microbial Ecology 35: 275–282.
Steemann-Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. Journal du Conseil Permanent International pour l’Exploration de la Mer. 18: 117–140.
UNESCO, 1973. International oceanographic tables, Vol 2. National Institute of Oceanography of Great Britain, Paris.
Tundisi, J. G., C. Teixeira, K. M. Tundisi, M. B. Kutner & L. Kinoshita, 1978. Plankton studies in a mangrove environment. IX. Comparative investigations with coastal oligotrophic waters. Revista Brasileira de Biologia 38:301–320.
Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik. Mitteilungen-Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9: 1–38.
Ward, F. J. & M. Nakanish, 1971. A comparison of Geiger-Müeller and liquid scintilation counting methods in estimating primary productivity. Limnology and Oceanography 16: 560–563.
Williams, P. J. L. B, 1981 Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschungen 5: 1–28.
Wright, R. T. & R. B. Coffin, 1983. Planktonic bacteria in estuaries and coastal waters of Northern Massachusetts: spatial and temporal distribution. Marine Ecology Progress Series 11: 205–216.
Acknowledgments
We thank many people involved in this work, in particular, A.C.C. Jakovac and F. P. Ricci for their help during sampling and analysis, T. Edison da Silva, M. dos Santos and the crew of “B/Pq Albacora” for their valuable help during sampling. The work was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) through grant 2000/07162-6 and a fellowship to Barrera-Alba from the Agencia Española de Cooperación Internacional (AECI). Thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the grant to Gianesella (302830/2003-0). And thanks also to Prof. James Hesson and PhD James T. Lee for the help in English revision.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: P. Viaroli
Rights and permissions
About this article
Cite this article
Barrera-Alba, J.J., Gianesella, S.M.F., Moser, G.A.O. et al. Bacterial and phytoplankton dynamics in a sub-tropical estuary. Hydrobiologia 598, 229–246 (2008). https://doi.org/10.1007/s10750-007-9156-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-007-9156-4


