Skip to main content
Log in

Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia)

  • PRIMARY RESEARCH PAPER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A comparative morphological and molecular characterization of species boundaries between four species of the Scleractinian genus Psammocora, namely P. digitata, P. haimeana, P. profundacella and P. contigua was conducted. The definition of species boundaries in this genus has been the subject of few studies, in spite of the presence of ambiguous taxonomic distinction, and a revision of the genus has never been undertaken. The multivariate analyses of both descriptive and morphometric characters confirmed the distinction of P. digitata and P. contigua, conversely P. haimeana, P. profundacella and their intermediate morph differentiated on the basis of descriptive morphologic characters only. Morphometric characters alone allowed a less defined distinction between morphs, and morphological boundaries essentially intergraded in a gradient driven by enclosed corallite series characters.

The phylogenetic analysis of a portion of the rDNA confirmed the morphological inferences, as P. digitata appears to be a distinct evolutionary lineage. Conversely, the other four morphs, P. contigua, P. haimeana, P. profundacella and their intermediate constitute a polytomic gene pool significantly distinct from P. digitata. Yet, P. contigua is significantly distinct from the other three morphs. Both morphological and molecular approaches suggested that P. haimeana, P. profundacella and their intermediate cannot be considered clearly distinct entities. Hybridization with other species of this genus not included in this study, or recent origin may have contributed to the polyphyly and lack of phylogenetic resolution of P. haimeana, P. profundacella and their intermediate morph. They appear to constitute a single gene pool showing morphological characters encompassing a gradient from the P. haimeana to the P. profundacella morphs. Such morphological variability possibly depends on environmental factors such as light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnheim, N., 1983. Concerted evolution of multigene families. In Nei, N. & R. K. Koehn (eds) Evolution of Genes and Proteins. Sinauer, Sunderland, MA, 38–61.

    Google Scholar 

  • Babcock, R. C., 1995. Synchronous multispecific spawning on coral reefs: potential for hybridization and roles of gamete recognition. Reproduction Fertility and Development 7: 943–950.

    Article  CAS  Google Scholar 

  • Benzoni, F., F. Stefani, J. Stolarski, M. Pichon, G. Mitta & P. Galli, 2007. Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contributions to Zoology 76(1): 35–54.

    Google Scholar 

  • Borel Best, M., G. J. Boekschoten & A. Oosterbaan, 1984. Species concept and ecomorph variation in living and fossil Scleractinia. Palaeontographica Americana 54: 18–44.

    Google Scholar 

  • Bray, R. J., & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Chen, C. A., B. L. Willis & D. J. Miller, 1996. Systematic relationships between tropical corallimorpharians (Cnidaria: Anthozoa: Corallimorpharia): utility of the 5.8S and internal transcribed spacer (ITS) regions of the rRNA transcription unit. Bulletin of Marine Science 59(1): 196–208.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. PRIMER-E Ltd, Plymouth Marine Laboratory, UK.

    Google Scholar 

  • Clement, M., D. Posada & K. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, O. E., R. P.M Bak, W. T. Stam & J. L. Olsen, 2001. Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Marine Biology 139: 221–233.

    Article  CAS  Google Scholar 

  • Dover, G., 1982. Molecular drive: a cohesive mode of species evolution. Nature 299:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Elder, J. F. & B. J. Turner, 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quarterly Review of Biology 70: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • Faure, G. F., 1982. Recherche sur les Peuplements de Scleractiniaires des récifs coralliens de l’Archipel des Mascareignes (Ocean Indien Occidental). PhD thesis, pp. 246.

  • Flot, J.-F., A. Tillier, S. Samadi & S. Tillier, 2006. Phase determination from direct sequencing of length-variable DNA regions. Molecular Ecology Notes 6: 627–630.

    Article  CAS  Google Scholar 

  • Fukami, H., M. Omori, K. Shimoike, T. Hayashibara & M. Hatta, 2003. Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Marine Biology 142: 679–684.

    Google Scholar 

  • Fukami, H., A. F. Budd, D. R. Levitan, J. Jara, R. Kersanach & N. Knowlton, 2004. Geographic differences in species boundaries among members of the Montastrea annularis complex based on molecular and morphological markers. Evolution 58: 324–337.

    PubMed  CAS  Google Scholar 

  • Gardiner, J. S., 1898. On the Fungid corals collected by the author in the South Pacific. Proceedings of the Zoological Society of London 3: 525–539.

    Google Scholar 

  • Gattuso, J. P., M. Pichon & J. Jaubert, 1991. Physiology and taxonomy of scleractinian corals: a case study in the genus Stylophora. Coral Reefs 9: 173–182.

    Article  Google Scholar 

  • Harrison, P. L., R. C. Babcock, G. D. Bull, J. K. Oliver, C. C. Wallace & B. L. Willis, 1984. Mass spawning in tropical reef corals. Science 223: 1186–1189.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 745–755.

    Article  Google Scholar 

  • Huelsenbeck, J. P., F. Ronquist, R. Nielsen & J. P. Bollback, 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Lam, K. & B. Morton, 2003. Morphological and ITS1, 5.8s, and partial ITS2 Ribosomal DNA sequence distinctions between two species of Platygyra (Cnidaria: Scleractinia) from Hong Kong. Marine Biotechnology 5: 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Lang, J. C., 1984. Whatever works: the variable importance of skeletal and of non-skeletal characters in scleractinian taxonomy. Palaentographica Americana 54: 18–44.

    Google Scholar 

  • Le Goff-Vitry, M. C., A. D. Rogers & D. Baglow, 2004. A deep-sea slant on the molecular phylogeny of Scleractinia. Molecular Phylogenetics and Evolution 30: 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Márquez, L. M., M. J. H. van Oppen, B. L. Willis, A. Reyes & D. J. Miller, 2002. The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Molecular Ecology 11: 1339–1349.

    Article  PubMed  Google Scholar 

  • Márquez, L.M, D. J. Miller, J. B. MacKenzie & M. J. H. van Oppen, 2003. Pseudogenes contribute to the extremely diversity of nuclear ribosomal DNA in hard coral Acropora. Molecular Biology and Evolution 20: 1077–1086.

    Article  PubMed  Google Scholar 

  • Martin, D. & E. Rybicki, 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562–563.

    Article  PubMed  CAS  Google Scholar 

  • Matthai, G., 1947. Skeletal variation in two large coralla from Tahiti, one of Pavona varians (Verrill) and another of Psammocora haimiana Milen Edwards and Haime. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 233: 197–199.

    Article  Google Scholar 

  • Matthai, G., 1948. Colony formation in Fungid corals Pavona, Echinophyllia, Leptoseris and Psammocora. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 233: 201–231.

    Article  Google Scholar 

  • McFadden, C. & M. B. Hutchinson, 2004. Molecular evidence for the hybrid origin of species in the soft coral genus Alcyonium (Cnidaria: Anthozoa: Octocorallia). Molecular Ecology 13: 1495–1505.

    Article  PubMed  CAS  Google Scholar 

  • Medina, M., E. Weil & A. M. Szmant, 1999. Examination of the Montastrea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Marine Biotechnology 1: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Milne Edwards, H. & J. Haime, 1851. Recherches sur les polypiers. Mém. 7. Monographie des Poritide. Ann Sci Nat 3e series 16: 21–70.

    Google Scholar 

  • Odorico, D. M. & D. J. Miller, 1997. Variation in the Internal Transcribed Spacres and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Molecular Biology and Evolution 14(5): 465–473.

    PubMed  CAS  Google Scholar 

  • Pichon, M. & F. Benzoni, 2007. Taxonomic re-appraisal of zooxanthellate Scleractinian Corals in the Maldive Archipelago. Zootaxa 1441: 21–33.

    Google Scholar 

  • Pillai, C. S. G. & G. Scheer, 1976. Report on the stony corals from the Maldive Archipelago. Results of the Zarifa Expedition 1957/58. Zoologica 43: 1–83.

    Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DBA substitution. Bioinformatics 14:817–818.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lanetty, M. & O. Hoegh-Guldberg, 2002. The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Molecular Ecology 11: 1177–1189.

    Article  PubMed  CAS  Google Scholar 

  • Romano, S. L. & R. S. Palumbi, 1996. Evolution of Scleractinian corals inferred from molecular systematics. Science 271: 640–642.

    Article  CAS  Google Scholar 

  • Rozas, J. & R. Rozas, 2001. DnaSP 3.52 DNA Sequence Polimorphism, Software for nucleotidic polymorphism analysis. Universitat de Barcelona.

  • Scheer, G. & G. Pillai, 1983. Report on the stony corals from the Red Sea. Zoologica 133: 1–197.

    Google Scholar 

  • Schneider, S., D. Roessli & L. Excoffier, 2000. ARLEQUIN. A software for population genetics data analysis. Genetics and Biometry laboratory, Dept. Antrophology and Ecology, Univ. of Geneva, Switzerland.

  • Shearer, T. M., M. J. H. van Oppen, S. L. Romano & G. Wörheide, 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475–2487.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard, C. R. C. & A. L. S. Sheppard, 1991. Corals and coral communities of Saudi Arabia. Fauna of Arabia 12: 1–170.

    Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 1999. Multiple comparison of log-likelihoods with application to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.

    CAS  Google Scholar 

  • Swofford, D. L., 2002. PAUP* beta version. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associated, Sunderland, MA, USA.

  • Takezaki, N., A. Rzhetsky & M. Nei, 1995. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution 12(5): 823–833.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., K. A. Crandall & C. F. Sing, 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation. Genetics 132: 619–633.

    PubMed  CAS  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882.

    Article  Google Scholar 

  • Van Oppen, M. J., B. J. McDonald, B. Willis & D. J. Miller, 2002. Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Molecular Ecology 11: 1363–1376.

    Article  PubMed  Google Scholar 

  • Van Oppen, M. J. H., B. L. Willis, H. W. J. Vugt & D. J. Miller, 2000. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analysis. Molecular Ecology 9: 1363–1373.

    Article  PubMed  CAS  Google Scholar 

  • Van Oppen, M. J. H., B. J. McDonald, B. Willis & D. J. Miller, 2001. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker. Reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18(7): 1315–1329.

    PubMed  Google Scholar 

  • Van Oppen, M. J. H., E. M. Koolmees & J. E. N. Veron, 2004. Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Marine Biology 144: 9–18.

    Article  Google Scholar 

  • Vaughan, T. W. & J. W. Wells, 1943. Revision of the sub-Orders, Families and Genera of the Scleractinia. Geol. Soc. America, Special Paper 44.

  • Veron, J. E. N., 1993. A biogeographic database of hermatypic corals, species of the central Indo-Pacific, genera of the world. Australian Institute of Marine Science Monograph Series 10: 433.

    Google Scholar 

  • Veron, J. E. N., 1995. Corals in Space and Time: The Biogeography and Evolution of the Scleractinia. University of New South Wales Press, Sydney, p 321.

    Google Scholar 

  • Veron, J. E. N., 2000. Corals of the World. Australian Institute of Marine Science Monograph Series, Vol. 1, p. 86.

  • Veron, J. E. N. & M. Pichon, 1976. Scleractinia of eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Government Publishing Service, Canberra.

    Google Scholar 

  • Vollmer, S. V. & S. R. Palumbi, 2004. Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Molecular Ecology 13: 2763–2772.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, C. C., 1999. Staghorn Corals of the World - A Revision of the Genus Acropora. CSIRO Publishing, Melbourne, p 421.

    Google Scholar 

  • Wallace, C. C. & B. L. Willis, 1994. Systematics of Acropora: effect of new biological findings on species concepts. Annual Review of Ecology and Systematic 25: 237–262.

    Google Scholar 

  • Wei, N. W. V., C. C. Wallace, C. F. Dai, K. R. Pillay & C. A. Chen, 2006. Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicated that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zoological Studies 45(3): 404–418.

    CAS  Google Scholar 

  • Weiller, G. F., 1998. Phylogenetic profiles: a graphical method for detecting genetic recombinations in homolog sequences. Molecular Biology and Evolution 15: 326–335.

    PubMed  CAS  Google Scholar 

  • Wheeler, Q. D. & R. Meier, 2000. Species Concepts and Phylogenetic Theory, A Debate. Columbia University Press, New York, p 230.

    Google Scholar 

  • White, T. J., T. Bruns S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., D. H. Gelfand, J. J. Sninsky, & T. J. White (eds) PCR Protocols. A Guide to Methods and Application. Academic Press Inc. San Diego, CA, USA.

    Google Scholar 

  • Wijsman-Best, M., 1974. Habitat-induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proceedings of the 2nd International Coral Reef Symposium 2: 217–228.

    Google Scholar 

  • Wilcox, D., B. Dove, D. McDavid & D. Greer, 1986–2001. UTHSCSA Image Tool for Windows. University of Texas Health Science Center, San Antonio.

  • Willis, B. L., 1985 Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proceedings of the 5th International Coral Reef Symposium 4: 107–112.

    Google Scholar 

  • Wolstenholme, J. K., C. C. Wallace, C. A. Chen, 2003. Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22: 155–166.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge M. Sandrini (Verbania) and Albatros Top Boat and Diving for logistic support in the Maldives, P. Tisseyre (Perpignan) for sequencing, P. Colantoni (Urbino), the Centre for the Ecology of Marine Tropical environments (CEMT) and the Fédération de Recherche “Biologie et Ecologie Tropicale et Mediterranéenne” (FR 2577 CNRS) Université de Perpignan for supporting this study. We also thank C. N. Bianchi and C. Morri (Genova) for useful suggestions on morphometric analysis, M. Casiraghi (Milano) for his help in the initial phase of the molecular work, and A. Geraci (Milano) for field assistance. Finally, we thank two anonymous referees for their helpful suggestion which have improved our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Stefani.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, F., Benzoni, F., Pichon, M. et al. Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia). Hydrobiologia 596, 153–172 (2008). https://doi.org/10.1007/s10750-007-9092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9092-3

Keywords

Navigation