, Volume 594, Issue 1, pp 91–96 | Cite as

Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna

  • Kevin PauwelsEmail author
  • Robby Stoks
  • Anne Verbiest
  • Luc De Meester


Daphnia can reproduce through subitaneous and dormant eggs. The production of dormant eggs is induced by stimuli associated with deteriorating growth conditions, and enable Daphnia populations to survive temporarily harsh environmental conditions. Dormant eggs are expected to have developed special biochemical adaptations to bridge this long unfavourable period, but little comparative biochemical data are available for dormant and subitaneous eggs. We compared levels of the following molecules between subitaneous and dormant eggs: (a) triglycerides, which are the most abundant energy storage molecules in Daphnia, (b) glycerol, a cryoprotectant also involved in energy storage, and (c) the heat shock protein Hsp60, a molecular chaperone that may assist in maintaining protein structural integrity and inhibiting cell metabolism during diapause. Unexpectedly, no difference in triglycerides content between egg types was found. As expected, dormant eggs contained more glycerol and relatively more Hsp60 than subitaneous eggs. The biochemical composition of dormant eggs can therefore be seen as an adaptation to the harsh environmental conditions these eggs encounter.


Cladocera Heat shock protein Hsp60 Diapause 



We thank three anonymous referees for their detailed and to-the-point comments of an early version of the manuscript, and Lisa Shama for the grammatical revision. Kevin Pauwels acknowledges financial support from IWT Flanders; Robby Stoks is a post-doctoral researcher with the Fund for Scientific Research (Flanders—FWO). This research was financially supported by FWO grant G.0269.04 and K.U.Leuven Research grant OT/04/23.


  1. Arbaciauskas, K., 1998. Life-history traits of exephippial and parthenogenetically derived daphnids: indicators of different life-history strategies. Archiv für Hydrobiologie 52: 339–358.Google Scholar
  2. Arbaciauskas, K., 2004. Life-history characteristics and fitness in descendents of parthenogenetic and ex-ephippio females of Daphnia magna. Hydrobiologia 526: 211–218.CrossRefGoogle Scholar
  3. Arbaciauskas, K. & W. Lampert, 2003. Seasonal adaptation of ex-ephippio and parthenogenetic offspring of Daphnia magna: differences in life history and physiology. Functional Ecology 17: 431–437.CrossRefGoogle Scholar
  4. Caceres, C. E., 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699–1710.Google Scholar
  5. Clegg, J. S., J. K. Willsie & S. A. Jackson, 1999. Adaptive significance of a small heat shock/alpha-crystallin protein (P26) in encysted embryos of the brine shrimp, Artemia franciscana. American Zoologist 39: 836–847.Google Scholar
  6. Cousyn, C., & L. De Meester, 1998. The vertical profile of resting banks in natural populations of the pond-dwelling cladoceran Daphnia magna Strauss. Archiv für Hydrobiologie, Special Issues Advances in Limnologie 52: 127–139.Google Scholar
  7. Denlinger, D. L., 2002. Regulation of diapause. Annual Review of Entomology 47: 93–122.PubMedCrossRefGoogle Scholar
  8. Denlinger, D. L., J. P. Rinehart & G. D.Yocum, 2001. Stress proteins: a role in insect diapause? In Denlinger, D. L., J. M. Giebultowicz & D. S. Saunders (eds), Insect Tming: Circadian Rhythmicity to Seasonality. Elsevier, Amsterdam: 155–171.Google Scholar
  9. Gilbert, J. J., 2004. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology 49: 1505–1515.CrossRefGoogle Scholar
  10. Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology and Oceanography 49: 1341–1354.CrossRefGoogle Scholar
  11. Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.CrossRefGoogle Scholar
  12. Hairston, N. G. Jr., A.-M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.CrossRefGoogle Scholar
  13. Kimura, M. T., T. Awasaki, T. Ohtsu & K. Shimada, 1992. Seasonal-changes in glycogen and trehalose content in relation to winter survival of 4 temperate species of Drosophila. Journal of Insect Physiology 38: 871–875.CrossRefGoogle Scholar
  14. Krebs, R. A. & M. E. Feder, 1997. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress & Chaperones 2: 60–71.CrossRefGoogle Scholar
  15. Lencioni, V., 2004. Survival strategies of freshwater insects in cold environments. Journal of Limnology 63(Suppl. 1): 45–55.Google Scholar
  16. Lundebye, A. K., G. R. Vedel, A. M. K. Christensen, K. Kristiansen, D. Hunter & M. H. Depledge, 1995. Improved quantification of stress proteins by Western blotting. Analitica Chimica Acta 311: 109–114.CrossRefGoogle Scholar
  17. Parsell, D. A. & S. Lindquist, 1993. The function of heat-shock proteins in stress tolerance – degradation and reactivation of damaged proteins. Annual Review of Genetics 27: 437–496.PubMedCrossRefGoogle Scholar
  18. Pauwels, K., R. Stoks & L. De Meester, 2005. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. Journal of Evolutionary Biology 18: 867–872.PubMedCrossRefGoogle Scholar
  19. Peters, R. H., 1987. Metabolism in Daphnia. Memorie dell’Instituto Italiano di Idrobiologia, 45: 193–243.Google Scholar
  20. Pijanowska, J. & M. Kloc, 2004. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38: 81–86.PubMedCrossRefGoogle Scholar
  21. Pockley, A. G., 2003. Heat shock proteins as regulators of the immune response. Lancet 362: 469–476.PubMedCrossRefGoogle Scholar
  22. Roff, D. A., 1992. The Eolution of Life Histories: Theory and Analysis. Chapman & Hall, New York.Google Scholar
  23. Sørensen, J. G., T. N. Kristensen & V. Loeschcke, 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters 6: 1025–1037.CrossRefGoogle Scholar
  24. Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, New York.Google Scholar
  25. Stibor, H. & D. Müller Navarra, 2000. Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Functional Ecology 14: 455–459.CrossRefGoogle Scholar
  26. Storey, K. B., 1997. Organic solutes in freezing tolerance. Comparative Biochemistry and Physiology. A. Physiology 117: 319–326.CrossRefGoogle Scholar
  27. Stross, R. G. & R. G. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1462–1464.PubMedCrossRefGoogle Scholar
  28. Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation in Daphnia – energy reserves and reproductive allocation. Limnology and Oceanography 28: 667–676.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Kevin Pauwels
    • 1
    Email author
  • Robby Stoks
    • 1
  • Anne Verbiest
    • 1
  • Luc De Meester
    • 1
  1. 1.Laboratory of Aquatic EcologyK.U.LeuvenLeuvenBelgium

Personalised recommendations