Advertisement

Hydrobiologia

, Volume 594, Issue 1, pp 187–199 | Cite as

Multiple defence strategies of Daphnia galeata against predation in a weakly stratified reservoir

  • Stephan HülsmannEmail author
  • Annekatrin Wagner
CLADOCERA

Abstract

In the presence of size-selective fish daphnids were shown to exhibit two alternative inducible defence strategies: They may either escape predation by active migration or adopt a life history strategy, e.g., reproduce earlier and at a smaller size. Depending on the type of habitat, migration may either be vertically (in deep stratified lakes) or horizontally (in shallow lakes with macrophytes) oriented. Concerning behavioural defence strategies, daphnids living in medium-deep, weakly stratified water bodies with a poorly developed littoral face a dilemma, since the littoral provides no shelter and the availability of a deep-water refuge is unpredictable. We studied the population dynamics, life history changes (size at maturity) and daytime vertical distribution of Daphnia galeata in a weakly stratified reservoir in relation to predation by juvenile fish during 6 years. While temperature gradients were usually small, oxygen concentrations suggest that a low-oxygen refuge for daphnids was available in every year to some extent. Our results indicate that, depending on predation intensity and stratification patterns, daphnids exhibit both, behavioural and life history defences. In years with a high biomass of young-of-the-year (YOY) perch Daphnia abundance declined rapidly at the end of the clear water stage while at the same time the vertical distribution at daytime shifted to deep strata providing a low-oxygen refuge and the size at maturity decreased. However, while the life history response in some years lasted throughout most of the summer period, a shift in daytime vertical distribution was exhibited for much shorter periods. Both traits were much less expressed in years with low YOY fish densities and no negative correlation between them could be verified. We suggest that under high predation pressure in this relatively shallow reservoir no strictly alternative (either behavioural or life history) strategies exist, but that daphnids make use of the full range of possible anti-predator defences available, at least during short periods when predation is most intense.

Keywords

Inducible defence YOY fish Behavioural response Life history shift Refuge availability Population dynamics 

Notes

Acknowledgements

We thank Reglindis Zehrer, Hanno Voigt, Johannes Kranich and Manuela Bollenbach for providing data on Daphnia distribution, G. Egerer for technical help, Heinz Schultz for providing CPUE data for 1992 and J. Benndorf for general support. The investigations were partly financed by the Federal Ministry of Education and Research (BMBF), Germany (grant nos. 0339423A and 0339549) and Deutsche Forschungsgemeinschaft (DFG), grant nos. Be 1671/2-1, -2-3. Three reviewers provided valuable comments to improve the manuscript.

References

  1. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Internationale Revue der Gesamten Hydrobiologie 80: 519–534.CrossRefGoogle Scholar
  2. Benndorf, J., J. Kranich, T. Mehner & A. Wagner, 2001. Temperature impact on the midsummer decline of Daphnia galeata: An analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshwater Biology 46: 199–212.CrossRefGoogle Scholar
  3. Benndorf, J., W. Boing, J. Koop & I. Neubauer, 2002. Top–down control of phytoplankton: The role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.CrossRefGoogle Scholar
  4. Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia 103: 309–318.CrossRefGoogle Scholar
  5. Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: The uncoupling of responses. American Naturalist 152: 237–248.CrossRefPubMedGoogle Scholar
  6. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  7. De Meester, L. & L. J. Weider, 1999. Depth selection behavior, fish kairomones, and the life histories of Daphnia hyaline × galeata clones. Limnology and Oceanography 44: 1248–1258.Google Scholar
  8. De Meester, L., L. J. Weider & R. Tollrian, 1995. Alternative antipredator defences and genetic polymorphism in a pelagic predator–prey system. Nature 378: 483–485.CrossRefGoogle Scholar
  9. Gliwicz, Z. M., 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–749.CrossRefGoogle Scholar
  10. Hülsmann, S., 2001. Reproductive potential of Daphnia galeata in relation to food conditions: Implications of a changing size-structure of the population. Hydrobiologia 442: 241–252.CrossRefGoogle Scholar
  11. Hülsmann, S., 2003. Recruitment patterns of Daphnia: A key for understanding midsummer declines? Hydrobiologia 491: 35–46.CrossRefGoogle Scholar
  12. Hülsmann, S., T. Mehner, S. Worischka & M. Plewa, 1999. Is the difference in population dynamics of Daphnia galeata in littoral and pelagic areas of a long-term biomanipulated reservoir affected by age-0 fish predation? Hydrobiologia 408/409: 57–63.CrossRefGoogle Scholar
  13. Hülsmann, S., J. Vijverberg, M. Boersma & W. M. Mooij, 2004. Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: A maladaptive response? Journal of Plankton Research 26: 535–543.CrossRefGoogle Scholar
  14. Hülsmann, S. & W. Weiler, 2000. Adult, not juvenile mortality as a major reason for the midsummer decline of a Daphnia population. Journal of Plankton Research 22: 151–168.CrossRefGoogle Scholar
  15. Köhler, J., 1992. Influence of turbulent mixing on growth and primary production of Microcystis aeruginosa in the hypertrophic Bautzen Reservoir. Archiv für Hydrobiologie 123: 413–429.Google Scholar
  16. Lampert, W., 1993a. Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 39: 79–88.Google Scholar
  17. Lampert, W., 1993b. Phenotypic plasticity of the size at first reproduction in Daphnia: The importance of maternal size. Ecology 74: 1455–1466.CrossRefGoogle Scholar
  18. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: A review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  19. Lauridsen, T. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794–798.Google Scholar
  20. Loose, C. & P. Dawidowicz, 1994. Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance. Ecology 75: 2255–2263.CrossRefGoogle Scholar
  21. Machácek, J., 1991. Indirect effects of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia 225: 193–197.CrossRefGoogle Scholar
  22. Mehner, T., H. Dörner & H. Schultz, 1998a. Factors determining the year-class strength of age-0 Eurasian perch (Perca fluviatilis, L.) in a biomanipulated reservoir. Archiv of Fisheries and Marine Research 46: 241–251.Google Scholar
  23. Mehner, T., S. Hülsmann, S. Worischka, M. Plewa & J. Benndorf, 1998b. Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. Journal of Plankton Research 20: 1797–1811.CrossRefGoogle Scholar
  24. Mehner, T., M. Plewa, S. Hülsmann & S. Worischka, 1998c. Gape-size dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Archiv für Hydrobiologie 142: 191–207.Google Scholar
  25. Mehner, T., H. Schultz, D. Bauer, R. Herbst, H. Voigt & J. Benndorf, 1996a. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): Interactions with zooplankton succession and prey fish availability and temperature. Annales Zoologici Fennici 33: 353–361.Google Scholar
  26. Mehner, T., H. Schultz, M. G. Werner, F. Wieland, R. Herbst & J. Benndorf, 1996b. Do 0+ percids couple the trophic cascade between fish and zooplankton in the top–down manipulated Bautzen reservoir (Germany)? Publicaciones Especiales del Instituto Espanol de Oceanografia 21: 243–251.Google Scholar
  27. Ringelberg, J., B. J. G. Flik, D. Aanen & E. Van Gool, 1997. Amplitude of diel vertical migration (DVM) is a function of fish biomass, a hypothesis. Archiv für Hydrobiologie Special Issues Advances in Limnology 49: 71–78.Google Scholar
  28. Ringelberg, J., B. J. G. Flik, D. Lindenaar & K. Royackers, 1991. Diel vertical migration of Daphnia hyalina (senso latiori) in Lake Maarsseveen Part 1. Aspects of seasonal and daily timing. Archiv für Hydrobiologie 121: 129–145.Google Scholar
  29. Sakwinska, O. & P. Dawidowicz, 2005. Life history strategy and depth selection behavior as alternative anitipredator defenses among natural Daphnia hyalina populations. Limnology and Oceanography 50: 1284–1289.CrossRefGoogle Scholar
  30. Spaak, P., J. Vanoverbeke & M. Boersma, 2000. Predator-induced life history changes and the coexistence of five taxa in a Daphnia species complex. Oikos 89: 164–174.CrossRefGoogle Scholar
  31. Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford. 249 pp.Google Scholar
  32. Stibor, H., 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162–165.CrossRefGoogle Scholar
  33. Stibor, H. & W. Lampert, 1993. Estimating the size at maturity in field populations of Daphnia (Cladocera). Freshwater Biology 30: 433–438.CrossRefGoogle Scholar
  34. Stich, H. B., 1989. Seasonal changes of diel vertical migrations of crustacean plankton in Lake Constance. Archiv für Hydrobiologie Supplement 83: 355–405.Google Scholar
  35. Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.CrossRefGoogle Scholar
  36. Tessier, A. J., 1984. Periodicity of egg laying and egg age distributions in planktonic cladocera. Canadian Journal of Fisheries and Aquatic Sciences 41: 409–413.CrossRefGoogle Scholar
  37. Tessier, A. J. & M. A. Leibold, 1997. Habitat use and ecological specialization within lake Daphnia populations. Oecologia 109: 561–570.CrossRefGoogle Scholar
  38. Thys, I. & L. Hoffmann, 2005. Diverse responses of planktonic crustaceans to fish predation by shifts in depth selection and size at maturity. Hydrobiologia 551: 87–98.CrossRefGoogle Scholar
  39. Tollrian, R. & S. I. Dodson, 1999. Inducible Defenses in Cladocera: Constraints, Costs, and Multipredator Environments. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey: 177–202.Google Scholar
  40. Tollrian, R. & C. D. Harvell, 1999. The Evolution of Inducible Defenses: Current Ideas. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey: 306–322.Google Scholar
  41. Van Gool, E. & J. Ringelberg, 2002. Relationship between fish kairomone concentration in a lake and phototactic swimming by Daphnia. Journal of Plankton Research 24: 713–721.CrossRefGoogle Scholar
  42. Vos, M., B. J. G. Flik, J. Vijverberg, J. Ringelberg & W. M. Mooij, 2002. From inducible defence to population dynamics: Modelling refuge use and life history changes in Daphnia. Oikos 99: 386–396.CrossRefGoogle Scholar
  43. Wagner, A., S. Hülsmann, H. Dörner, M. Janssen, U. Kahl, T. Mehner & J. Benndorf, 2004. Initiation of the midsummer decline of Daphnia as related to predation, non-consumptive mortality and recruitment: a balance. Archiv für Hydrobiologie 160: 1–23.CrossRefGoogle Scholar
  44. Wright, D. & J. Shapiro, 1990. Refuge availability: A key to understanding the summer disappearance of Daphnia. Freshwater Biology 24: 43–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Hydrobiology, Technische Universität DresdenDresdenGermany

Personalised recommendations