Skip to main content

Advertisement

Log in

Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our objective was to assess the potential of Cladocera from mountain lakes for climate reconstruction. We related Cladocera from surface sediments of Alpine lakes (1,502–2,309 m asl) to 29 abiotic environmental variables using statistical methods. The environmental dataset included water chemistry, lake depth, and bi-hourly water-temperature logs, which were used to assess mean monthly water temperatures, dates of freezing and breakup, spring and autumn mixing. We found 14 different Cladocera of the families Bosminidae, Daphniidae, and Chydoridae. Lakes without Cladocera (eight lakes) were cold and/or ultra-oligotrophic, whereas lakes with planktonic and littoral Cladocera (19 lakes) were warmer and/or less oligotrophic. Lakes with only littoral Cladocera (18 lakes) had intermediate water temperatures/trophy. Changes in Cladocera assemblages were related to changes in climate, nutrients, and/or alkalinity. We found a climate threshold at which Bosminidae disappeared in 95% of the lakes. For climate-change research, we propose studying Cladocera along transects that include climatic thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barry, R. G., 2001. Mountain Weather and Climate. Routledge, London.

    Google Scholar 

  • Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107–124.

    Article  Google Scholar 

  • Battarbee, R. W., J. A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28: 161–179.

    Article  Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modeling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge, 161–254.

  • Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.

    Google Scholar 

  • Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.

    Article  Google Scholar 

  • Bottrell, H. H., 1975. Generation time, length of instar, instar duration and frequency of moulting, and their relationship to temperature in eight species of Cladocera from the River Thames, Reading. Oecologia 19: 129–140.

    Article  Google Scholar 

  • Bradley, R. S., 2000. Past global changes and their significance for the future. Quaternary Science Reviews 19: 391–402.

    Article  Google Scholar 

  • Catalan, J., M. Ventura, A. Brancelj, I. Granados, H. Thies, U. Nickus, A. Korhola, A. F. Lotter, A. Barbieri, E. Stuchlík, L. Lien, P. Bitušík, T. Buchaca, L. Camarero, G. H. Goudsmit, J. Kopáćek, G. Lemcke, D. M. Livingstone, B. Müller, M. Rautio, M. Šiško, S. Sorvari, F. Šporka, O. Strunecký & M. Toro, 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28: 25–46.

    Article  Google Scholar 

  • Cummings, M. P., D. S. Myers & M. Mangelson, 2004. Applying permutation tests to tree-based statistical models: extending the R package rpart. Technical Report CS-TR-4581, UMIACS-TR-2004-24. Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland.

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Duigan, C. A., 1992. The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland, with taxonomic comments on some species. Hydrobiologia 241: 1–70.

    Article  Google Scholar 

  • Duigan, C. A. & H. H. Birks, 2000. The late-Glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. Journal of Paleolimnology 23: 67–76.

    Article  Google Scholar 

  • Duigan, C. A. & W. L. Kovach, 1991. A study of the distribution and ecology of littoral freshwater Chydorid (Crustacea, Cladocera) communities in Ireland using multivariate analyses. Journal of Biogeography 18: 267–280.

    Article  Google Scholar 

  • Flössner, D., 1972. Branchiopoda, Branchiura. Tierwelt Deutschlands 60: 1–501.

    Google Scholar 

  • Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.

    Google Scholar 

  • Frey, D. G., 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Archiv für Hydrobiologie, Supplement Ergebnisse der Limnologie 2: 1–116.

    Google Scholar 

  • Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (eds), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 667–692.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10,000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.

    Article  Google Scholar 

  • Goulden, C. E. & D. G. Frey, 1963. The occurrence and significance of lateral head pores in the genus Bosmina (Cladocera). Internationale Revue der gesamten Hydrobiologie 48: 513–522.

    Article  Google Scholar 

  • Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite lake (northern Poland). Hydrobiologia 526: 137–144.

    Article  Google Scholar 

  • Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecological Monographs 38: 223–241.

    Article  Google Scholar 

  • Hausmann, S., A. F. Lotter, J. F. N. van Leeuwen, C. Ohlendorf, G. Lemcke, E. Grönlund & M. Sturm, 2002. Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12: 279–289.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter, S. Hausmann & F. Kienast, 2003. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13: 477–484.

    Article  Google Scholar 

  • Hessen, D. O. & N. A. Rukke, 2000. The costs of moulting in Daphnia; mineral regulation of carbon budgets. Freshwater Biology 45: 169–178.

    Article  Google Scholar 

  • Hofmann, W., 1986. Developmental history of the Grosser Plöner See and the Schönsee (north Germany): cladoceran analysis, with special reference to eutrophication. Archiv für Hydrobiologie, Supplement 74: 259–287.

    Google Scholar 

  • Hofmann, W., 1987. Cladocera in space and time – analysis of lake-sediments. Hydrobiologia 145: 315–321.

    Article  Google Scholar 

  • Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.

    Article  Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.

    Article  Google Scholar 

  • Hofmann, W., 2000. Response of the chydorid faunas to rapid climatic changes in four Alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 281–292.

    Article  Google Scholar 

  • Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.

    Article  Google Scholar 

  • Hofmann, W., 2003. The long-term succession of high-altitude cladoceran assemblages: a 9,000-year record from Sägistalsee (Swiss Alps). Journal of Paleolimnology 30: 291–296.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Sondergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediments of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.

    Article  Google Scholar 

  • Kamenik, C., K. A. Koinig, R. Schmidt, P. G. Appleby, J. A. Dearing, A. Lami, R. Thompson & R. Psenner, 2000. Eight-hundred years of environmental changes in a high alpine lake (Gossenköllesee, Tyrol) inferred from sediment records. Journal of Limnology 59: 43–52.

    Google Scholar 

  • Kamenik, C. & R. Schmidt, 2005. Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34: 477–489.

    Article  Google Scholar 

  • Kamenik, C., R. Schmidt, G. Kum & R. Psenner, 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arctic, Antarctic and Alpine Research 33: 404–409.

    Article  Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In: Smol, J. P., H. J. B. Birks, & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, 5–41.

    Google Scholar 

  • Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera – lake depth transfer model. Journal of Paleolimnology 34: 175–190.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lotter, A. F. & H. J. B. Birks, 2003. The Holocene palaeolimnology of Sägistalsee and its environmental history – a synthesis. Journal of Paleolimnology 30: 333–342.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 349–361.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.

    Article  Google Scholar 

  • Lotter, A. F. & S. Juggins, 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA-Subcommission for the study of the Holocene Working Group on Data-Handling Methods, Newsletter 6: 4–6.

    Google Scholar 

  • Manca, M. & M. Armiraglio, 2002. Zooplankton of 15 lakes in the southern Central Alps: comparison of recent and past (pre-ca 1850 AD) communities. Journal of Limnology 61: 225–231.

    Google Scholar 

  • Meijering, M. P. D., 1983. On the occurrence of ‘arctic’ Cladocera with special reference to those along the Strait of Belle Isle (Quebec, Labrador, Newfoundland). Internationale Revue der gesamten Hydrobiologie 68: 885–893.

    Article  Google Scholar 

  • Milecka, K. & K. Szeroczyńska, 2005. Changes in macrophytic flora and planktonic organisms in Lake Ostrowite, Poland, as a response to climatic and trophic fluctuations. Holocene 15: 74–84.

    Article  Google Scholar 

  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko & W. Karlen, 2005. Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433: 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Müller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana lakes. Investigations of Indiana Lakes & Streams 6: 1–63.

    Google Scholar 

  • Plath, K. & M. Boersma, 2001. Mineral limitation of zooplankton: stochiometric constraints and optimal foraging. Ecology 82: 1260–1269.

    Google Scholar 

  • Rautio, M., 1998. Community structure of crustacean zooplankton in subarctic ponds – effects of altitude and physical heterogeneity. Ecography 21: 327–335.

    Article  Google Scholar 

  • Rautio, M., 2001. Zooplankton assemblages related to environmental characteristics in treeline ponds in Finnish Lapland. Arctic, Antarctic and Alpine Research 33: 289–298.

    Article  Google Scholar 

  • Sandøy, S. & J. P. Nilssen, 1986. A geographical survey of littoral Crustacea in Norway and their use in paleolimnology. Hydrobiologia 143: 277–286.

    Article  Google Scholar 

  • Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. Journal of Paleolimnology 22: 277–290.

    Article  Google Scholar 

  • Sarmaja-Korjonen, K., S. Kultti, N. Solovieva & M. Valiranta, 2003. Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. Journal of Paleolimnology 30: 415–426.

    Article  Google Scholar 

  • Schmidt, R., C. Kamenik, C. Kaiblinger & M. Hetzel, 2004a. Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. Journal of Paleolimnology 32: 177–196.

    Article  Google Scholar 

  • Schmidt, R., C. Kamenik, H. Lange-Bertalot & R. Klee, 2004b. Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. Journal of Limnology 63: 171–189.

    Google Scholar 

  • Schulz, K. L. & R. W. Sterner, 1999. Phytoplankton phosphorus limitation and food quality for Bosmina. Limnology and Oceanography 44: 1549–1556.

    CAS  Google Scholar 

  • Sterner, R. W., D. D. Hagemeier & W. L. Smith, 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnology and Oceanography 38: 857–871.

    Article  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Szeroczyńska, K., 1984. Analiza Cladocera w osadach niektórych jezior tatrzańskich (Results of examination of Cladocera remains in lacustrine sediments of Dolina Pięciu Stawów Polskich). Prace i Studia Geograficzne 5: 93–110.

    Google Scholar 

  • Szeroczyńska, K., 1998a. Cladocera analysis in the Late-Glacial sediments of the Lake Gościąž, Central Poland. In: Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska, & L. Starkel (eds), Lake Gościąž, Central Poland. A Monographic Study. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 148–158.

    Google Scholar 

  • Szeroczyńska, K., 1998b. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeography, Palaeoclimatology. Palaeoecology 140: 335–345.

    Article  Google Scholar 

  • Szeroczyńska, K., 2002. Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quaternary International 95–96: 165–174.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1987. The analysis of vegetation–environment relationships by Canonical Correspondence Analysis. Vegetatio 69: 69–77.

    Article  Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted Averaging Partial Least Squares Regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Article  Google Scholar 

  • ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca NY, USA.

  • Thompson, R., C. Kamenik & R. Schmidt, 2005. Ultra-sensitive Alpine lakes and climate change. Journal of Limnology 64: 139–152.

    Google Scholar 

  • Urabe, J., J. Clasen & R. W. Sterner, 1997. Phosphorus limitation of Daphnia growth: is it real? Limnology and Oceanography 42: 1436–1443.

    CAS  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Google Scholar 

  • Venables, W. N. & D. M. Smith, 2002. An Introduction to R. Network Theory Ltd., Bristol.

    Google Scholar 

  • Whiteside, M. C. & R. V. Harmsworth, 1967. Species diversity in chydorid (Cladocera) communities. Ecology 48: 664–667.

    Article  Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 405–412.

    Article  Google Scholar 

  • Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.

    Article  Google Scholar 

  • Winder, M., M. T. Monaghan & P. Spaak, 2001. Have human impacts changed Alpine zooplankton diversity over the past 100 years? Arctic, Antarctic and Alpine Research 33: 467–475.

    Article  Google Scholar 

  • Wright, S. P., 1992. Adjusted P-values for simultaneous inference. Biometrics 48: 1005–1013.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank P. Indinger and numerous volunteers for their help in the field. H. Höllerer and J. Knoll for technical assistance, B. Franzoi and W. Müller for chemical analyses, G. Kum for lake surface-area measurements, three anonymous reviewers for helpful comments, J. Kaplan for correcting the English, and E. Slezak for her support while writing the manuscript. This study was funded by the Austrian Science Fund (FWF, project no. P14912-B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kamenik.

Additional information

Guest editor: Piet Spaak

Cladocera: Proceedings of the 7th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenik, C., Szeroczyńska, K. & Schmidt, R. Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594, 33–46 (2007). https://doi.org/10.1007/s10750-007-9083-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9083-4

Keywords

Navigation