Advertisement

Hydrobiologia

, Volume 594, Issue 1, pp 33–46 | Cite as

Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies

  • Christian KamenikEmail author
  • Krystyna Szeroczyńska
  • Roland Schmidt
CLADOCERA

Abstract

Our objective was to assess the potential of Cladocera from mountain lakes for climate reconstruction. We related Cladocera from surface sediments of Alpine lakes (1,502–2,309 m asl) to 29 abiotic environmental variables using statistical methods. The environmental dataset included water chemistry, lake depth, and bi-hourly water-temperature logs, which were used to assess mean monthly water temperatures, dates of freezing and breakup, spring and autumn mixing. We found 14 different Cladocera of the families Bosminidae, Daphniidae, and Chydoridae. Lakes without Cladocera (eight lakes) were cold and/or ultra-oligotrophic, whereas lakes with planktonic and littoral Cladocera (19 lakes) were warmer and/or less oligotrophic. Lakes with only littoral Cladocera (18 lakes) had intermediate water temperatures/trophy. Changes in Cladocera assemblages were related to changes in climate, nutrients, and/or alkalinity. We found a climate threshold at which Bosminidae disappeared in 95% of the lakes. For climate-change research, we propose studying Cladocera along transects that include climatic thresholds.

Keywords

Lake mixing Climate Threshold Alps Mountain lakes 

Notes

Acknowledgments

We would like to thank P. Indinger and numerous volunteers for their help in the field. H. Höllerer and J. Knoll for technical assistance, B. Franzoi and W. Müller for chemical analyses, G. Kum for lake surface-area measurements, three anonymous reviewers for helpful comments, J. Kaplan for correcting the English, and E. Slezak for her support while writing the manuscript. This study was funded by the Austrian Science Fund (FWF, project no. P14912-B06).

References

  1. Barry, R. G., 2001. Mountain Weather and Climate. Routledge, London.Google Scholar
  2. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107–124.CrossRefGoogle Scholar
  3. Battarbee, R. W., J. A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28: 161–179.CrossRefGoogle Scholar
  4. Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  5. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modeling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge, 161–254.Google Scholar
  6. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
  7. Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.CrossRefGoogle Scholar
  8. Bottrell, H. H., 1975. Generation time, length of instar, instar duration and frequency of moulting, and their relationship to temperature in eight species of Cladocera from the River Thames, Reading. Oecologia 19: 129–140.CrossRefGoogle Scholar
  9. Bradley, R. S., 2000. Past global changes and their significance for the future. Quaternary Science Reviews 19: 391–402.CrossRefGoogle Scholar
  10. Catalan, J., M. Ventura, A. Brancelj, I. Granados, H. Thies, U. Nickus, A. Korhola, A. F. Lotter, A. Barbieri, E. Stuchlík, L. Lien, P. Bitušík, T. Buchaca, L. Camarero, G. H. Goudsmit, J. Kopáćek, G. Lemcke, D. M. Livingstone, B. Müller, M. Rautio, M. Šiško, S. Sorvari, F. Šporka, O. Strunecký & M. Toro, 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28: 25–46.CrossRefGoogle Scholar
  11. Cummings, M. P., D. S. Myers & M. Mangelson, 2004. Applying permutation tests to tree-based statistical models: extending the R package rpart. Technical Report CS-TR-4581, UMIACS-TR-2004-24. Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland.Google Scholar
  12. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  13. Duigan, C. A., 1992. The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland, with taxonomic comments on some species. Hydrobiologia 241: 1–70.CrossRefGoogle Scholar
  14. Duigan, C. A. & H. H. Birks, 2000. The late-Glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. Journal of Paleolimnology 23: 67–76.CrossRefGoogle Scholar
  15. Duigan, C. A. & W. L. Kovach, 1991. A study of the distribution and ecology of littoral freshwater Chydorid (Crustacea, Cladocera) communities in Ireland using multivariate analyses. Journal of Biogeography 18: 267–280.CrossRefGoogle Scholar
  16. Flössner, D., 1972. Branchiopoda, Branchiura. Tierwelt Deutschlands 60: 1–501.Google Scholar
  17. Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  18. Frey, D. G., 1964. Remains of animals in Quaternary lake and bog sediments and their interpretation. Archiv für Hydrobiologie, Supplement Ergebnisse der Limnologie 2: 1–116.Google Scholar
  19. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (eds), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 667–692.Google Scholar
  20. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.Google Scholar
  21. Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10,000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.CrossRefGoogle Scholar
  22. Goulden, C. E. & D. G. Frey, 1963. The occurrence and significance of lateral head pores in the genus Bosmina (Cladocera). Internationale Revue der gesamten Hydrobiologie 48: 513–522.CrossRefGoogle Scholar
  23. Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite lake (northern Poland). Hydrobiologia 526: 137–144.CrossRefGoogle Scholar
  24. Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecological Monographs 38: 223–241.CrossRefGoogle Scholar
  25. Hausmann, S., A. F. Lotter, J. F. N. van Leeuwen, C. Ohlendorf, G. Lemcke, E. Grönlund & M. Sturm, 2002. Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12: 279–289.CrossRefGoogle Scholar
  26. Heiri, O., A. F. Lotter, S. Hausmann & F. Kienast, 2003. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13: 477–484.CrossRefGoogle Scholar
  27. Hessen, D. O. & N. A. Rukke, 2000. The costs of moulting in Daphnia; mineral regulation of carbon budgets. Freshwater Biology 45: 169–178.CrossRefGoogle Scholar
  28. Hofmann, W., 1986. Developmental history of the Grosser Plöner See and the Schönsee (north Germany): cladoceran analysis, with special reference to eutrophication. Archiv für Hydrobiologie, Supplement 74: 259–287.Google Scholar
  29. Hofmann, W., 1987. Cladocera in space and time – analysis of lake-sediments. Hydrobiologia 145: 315–321.CrossRefGoogle Scholar
  30. Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.CrossRefGoogle Scholar
  31. Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.CrossRefGoogle Scholar
  32. Hofmann, W., 2000. Response of the chydorid faunas to rapid climatic changes in four Alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 281–292.CrossRefGoogle Scholar
  33. Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.CrossRefGoogle Scholar
  34. Hofmann, W., 2003. The long-term succession of high-altitude cladoceran assemblages: a 9,000-year record from Sägistalsee (Swiss Alps). Journal of Paleolimnology 30: 291–296.CrossRefGoogle Scholar
  35. Jackson, D. A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.CrossRefGoogle Scholar
  36. Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Sondergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediments of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.CrossRefGoogle Scholar
  37. Kamenik, C., K. A. Koinig, R. Schmidt, P. G. Appleby, J. A. Dearing, A. Lami, R. Thompson & R. Psenner, 2000. Eight-hundred years of environmental changes in a high alpine lake (Gossenköllesee, Tyrol) inferred from sediment records. Journal of Limnology 59: 43–52.Google Scholar
  38. Kamenik, C. & R. Schmidt, 2005. Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34: 477–489.CrossRefGoogle Scholar
  39. Kamenik, C., R. Schmidt, G. Kum & R. Psenner, 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arctic, Antarctic and Alpine Research 33: 404–409.CrossRefGoogle Scholar
  40. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.CrossRefGoogle Scholar
  41. Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In: Smol, J. P., H. J. B. Birks, & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, 5–41.Google Scholar
  42. Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera – lake depth transfer model. Journal of Paleolimnology 34: 175–190.CrossRefGoogle Scholar
  43. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  44. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  45. Lotter, A. F. & H. J. B. Birks, 2003. The Holocene palaeolimnology of Sägistalsee and its environmental history – a synthesis. Journal of Paleolimnology 30: 333–342.CrossRefGoogle Scholar
  46. Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 349–361.CrossRefGoogle Scholar
  47. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  48. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.CrossRefGoogle Scholar
  49. Lotter, A. F. & S. Juggins, 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA-Subcommission for the study of the Holocene Working Group on Data-Handling Methods, Newsletter 6: 4–6.Google Scholar
  50. Manca, M. & M. Armiraglio, 2002. Zooplankton of 15 lakes in the southern Central Alps: comparison of recent and past (pre-ca 1850 AD) communities. Journal of Limnology 61: 225–231.Google Scholar
  51. Meijering, M. P. D., 1983. On the occurrence of ‘arctic’ Cladocera with special reference to those along the Strait of Belle Isle (Quebec, Labrador, Newfoundland). Internationale Revue der gesamten Hydrobiologie 68: 885–893.CrossRefGoogle Scholar
  52. Milecka, K. & K. Szeroczyńska, 2005. Changes in macrophytic flora and planktonic organisms in Lake Ostrowite, Poland, as a response to climatic and trophic fluctuations. Holocene 15: 74–84.CrossRefGoogle Scholar
  53. Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko & W. Karlen, 2005. Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433: 613–617.PubMedCrossRefGoogle Scholar
  54. Müller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana lakes. Investigations of Indiana Lakes & Streams 6: 1–63.Google Scholar
  55. Plath, K. & M. Boersma, 2001. Mineral limitation of zooplankton: stochiometric constraints and optimal foraging. Ecology 82: 1260–1269.Google Scholar
  56. Rautio, M., 1998. Community structure of crustacean zooplankton in subarctic ponds – effects of altitude and physical heterogeneity. Ecography 21: 327–335.CrossRefGoogle Scholar
  57. Rautio, M., 2001. Zooplankton assemblages related to environmental characteristics in treeline ponds in Finnish Lapland. Arctic, Antarctic and Alpine Research 33: 289–298.CrossRefGoogle Scholar
  58. Sandøy, S. & J. P. Nilssen, 1986. A geographical survey of littoral Crustacea in Norway and their use in paleolimnology. Hydrobiologia 143: 277–286.CrossRefGoogle Scholar
  59. Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. Journal of Paleolimnology 22: 277–290.CrossRefGoogle Scholar
  60. Sarmaja-Korjonen, K., S. Kultti, N. Solovieva & M. Valiranta, 2003. Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. Journal of Paleolimnology 30: 415–426.CrossRefGoogle Scholar
  61. Schmidt, R., C. Kamenik, C. Kaiblinger & M. Hetzel, 2004a. Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. Journal of Paleolimnology 32: 177–196.CrossRefGoogle Scholar
  62. Schmidt, R., C. Kamenik, H. Lange-Bertalot & R. Klee, 2004b. Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. Journal of Limnology 63: 171–189.Google Scholar
  63. Schulz, K. L. & R. W. Sterner, 1999. Phytoplankton phosphorus limitation and food quality for Bosmina. Limnology and Oceanography 44: 1549–1556.Google Scholar
  64. Sterner, R. W., D. D. Hagemeier & W. L. Smith, 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnology and Oceanography 38: 857–871.CrossRefGoogle Scholar
  65. Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, Inc., New York.Google Scholar
  66. Szeroczyńska, K., 1984. Analiza Cladocera w osadach niektórych jezior tatrzańskich (Results of examination of Cladocera remains in lacustrine sediments of Dolina Pięciu Stawów Polskich). Prace i Studia Geograficzne 5: 93–110.Google Scholar
  67. Szeroczyńska, K., 1998a. Cladocera analysis in the Late-Glacial sediments of the Lake Gościąž, Central Poland. In: Ralska-Jasiewiczowa, M., T. Goslar, T. Madeyska, & L. Starkel (eds), Lake Gościąž, Central Poland. A Monographic Study. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 148–158.Google Scholar
  68. Szeroczyńska, K., 1998b. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeography, Palaeoclimatology. Palaeoecology 140: 335–345.CrossRefGoogle Scholar
  69. Szeroczyńska, K., 2002. Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quaternary International 95–96: 165–174.CrossRefGoogle Scholar
  70. ter Braak, C. J. F., 1987. The analysis of vegetation–environment relationships by Canonical Correspondence Analysis. Vegetatio 69: 69–77.CrossRefGoogle Scholar
  71. ter Braak, C. J. F. & S. Juggins, 1993. Weighted Averaging Partial Least Squares Regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.CrossRefGoogle Scholar
  72. ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.CrossRefGoogle Scholar
  73. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca NY, USA.Google Scholar
  74. Thompson, R., C. Kamenik & R. Schmidt, 2005. Ultra-sensitive Alpine lakes and climate change. Journal of Limnology 64: 139–152.Google Scholar
  75. Urabe, J., J. Clasen & R. W. Sterner, 1997. Phosphorus limitation of Daphnia growth: is it real? Limnology and Oceanography 42: 1436–1443.Google Scholar
  76. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.Google Scholar
  77. Venables, W. N. & D. M. Smith, 2002. An Introduction to R. Network Theory Ltd., Bristol.Google Scholar
  78. Whiteside, M. C. & R. V. Harmsworth, 1967. Species diversity in chydorid (Cladocera) communities. Ecology 48: 664–667.CrossRefGoogle Scholar
  79. Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 405–412.CrossRefGoogle Scholar
  80. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.CrossRefGoogle Scholar
  81. Winder, M., M. T. Monaghan & P. Spaak, 2001. Have human impacts changed Alpine zooplankton diversity over the past 100 years? Arctic, Antarctic and Alpine Research 33: 467–475.CrossRefGoogle Scholar
  82. Wright, S. P., 1992. Adjusted P-values for simultaneous inference. Biometrics 48: 1005–1013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Christian Kamenik
    • 1
    Email author
  • Krystyna Szeroczyńska
    • 2
  • Roland Schmidt
    • 3
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland
  3. 3.Institute of LimnologyAustrian Academy of SciencesMondseeAustria

Personalised recommendations