Advertisement

Hydrobiologia

, Volume 594, Issue 1, pp 97–108 | Cite as

Colonization of acidic mining lakes: Chydorus sphaericus and other Cladocera within a dynamic horizontal pH gradient (pH 3−7) in Lake Senftenberger See (Germany)

  • Maria BelyaevaEmail author
  • Rainer Deneke
Cladocera

Abstract

Acidic mining lakes are man-made habitats, which differ greatly from natural acidic lakes in their water chemistry. In order to study the potential for colonization of mining lakes by Cladocera we investigated their in situ distributions within a pH gradient from 3 to 7.5 occurring in Lake Senftenberger See (Germany). We found that species in situ pH minima were higher and the overall diversity at the respective pH values was lower in the investigated mining lake in comparison to natural acidic lakes. Possible explanations involve the specific water chemistry in mining lakes. Chydorus sphaericus was the most acid-tolerant species and occurred along the entire pH gradient. We experimentally tested the effect of lake water of different pH values on C. sphaericus. Surprisingly, its survival was the highest at low pH (3–4), while moderately acidic and neutral pH (5–7) had a well-expressed toxic effect on the animals. About 20% of C. sphaericus survived when transferred from pH 3 to pH 7 and vice versa, which suggests that this species is a generalist in relation to pH. As Cladocera display species-specific pH tolerances, we suggest that they could be a useful group for ecological quality assessment of acidified mining lakes.

Keywords

Acidic stress Extreme environment Acute toxicity Acclimation Survival Littoral Cladocera 

Notes

Acknowledgements

We would like to thank Ingo Henschke, a field technician at the research station of the Department of Freshwater Conservation in Bad Saarow (Germany), who never gave up to fight with macrophytes, in order to bring us wherever we wanted. We are also grateful to his colleague Wolfgang Terlinden who took over in time of need. Furthermore, thanks to Hilmar Hofmann, who made us start with GIS software and to Brigitte Nixdorf for her interest and support of this work. We are grateful to Laura Hovind, Piet Spaak, and two anonymous reviewers, whose helpful comments led to the improvement of this manuscript. Maria Belyaeva was supported by a scholarship from DAAD (German Academic Exchange Service).

References

  1. Almer, B., W. Dickson, C. Ekström, E. Hörnström & U. Miller, 1974. Effects of acidification on Swedish lakes. Ambio 3: 30–36.Google Scholar
  2. Ahearn, G. A., P. K. Mandal & A. Mandal, 2004. Calcium regulation in crustaceans during the moult cycle: a review and update. Comparative Biochemistry and Physiology A: Molecular & Integrative physiology 137: 247–257.CrossRefGoogle Scholar
  3. Backhaus K., B. Erichson, W. Plinke & R. Weiber, 2003. Multivariate Analysenmethoden, 10th ed. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  4. Belyaeva, M. A., 2003. Littoral Cladocera (Crustacea: Branchiopoda) from Altai mountain lakes, with remarks on the taxonomy of Chydorus sphaericus. Arthropoda Selecta 12: 171–182.Google Scholar
  5. Bērzinš, B. & J. Bertilsson, 1990. Occurence of limnic micro-crustaceans in relation to pH and humic content in Swedish water bodies. Hydrobiologia 199: 65–71.CrossRefGoogle Scholar
  6. Boronat, L., M. R. Miracle & X. Armengol, 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442: 75–88.CrossRefGoogle Scholar
  7. Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Water Air and Soil Pollution 44: 387–414.CrossRefGoogle Scholar
  8. De Eyto, E., K. Irvine, F. Garcia-Criado, M. Gyllstrom, E. Jeppesen, R. Kornijow, M. R. Miracle, M. Nykanen, C. Bareiss, S. Cerbin, J. Salujoe, R. Franken, D. Stephens & B. Moss, 2003. The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Archiv für Hydrobiologie 156: 181–202.CrossRefGoogle Scholar
  9. Deneke, R., 2000. Review of rotifers and crustaceans in highly acidic environments of pH values > 3. Hydrobiologia 433: 167–172.CrossRefGoogle Scholar
  10. Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  11. Frey, D. G., 1980. On the plurality of Chydorus sphaericus (O. F. Müller) (Cladocera, Chydoridae), and designation of a neotype from Sjælsø, Denmark. Hydrobiologia 69: 83–123.CrossRefGoogle Scholar
  12. Frey, D. G., 1986. The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution. In: Heck, K. L., R. H. Gore (eds) Crustacean Biogeography, 4. A.A. Balkema, Rotterdam: 237–256.Google Scholar
  13. Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Freshwater Biology 10: 41–45.CrossRefGoogle Scholar
  14. Fryer, G., 1993. Variation in acid tolerance of certain freshwater crustaceans in different natural waters. Hydrobiologia 250: 119–125.CrossRefGoogle Scholar
  15. Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulfuric acidification of lakes. In: Geller, W., H. Klapper & W. Salomons (eds) Acidic mining lakes. Springer: 3–14.Google Scholar
  16. Hämmerling, R., J. Rücker, H. Behrendt & B. Nixdorf, 2006. Development of phosphorus input in Lake Scharmützelsee, Germany, and the changes in phosphorus balance. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 29: 1639–1641.Google Scholar
  17. Havas, M. & G. E. Likens, 1985. Changes in Na-22 influx and outflux in Daphnia magna (Straus) as a function of elevated Al concentrations in soft-water at low pH. Proceedings of the National Academy of Sciences of the United States of America 82: 7345–7349.PubMedCrossRefGoogle Scholar
  18. Havas, M. & E. Advokaat, 1995. Can sodium regulation be used to predict the relative acid-sensitivity of various life-stages and different species of aquatic fauna? Water Air and Soil Pollution 85: 865–870.CrossRefGoogle Scholar
  19. Havas, M. & B. O. Rosseland, 1995. Response of zooplankton, benthos, and fish to acidification: An overview. Water Air and Soil Pollution 85: 51–62.CrossRefGoogle Scholar
  20. Kappes, H. & U. Sinsch, 2005. Tolerance of Ceriodaphnia quadrangula and Diaphanosoma brachyurum (Crustacea: Cladocera) to experimental soft water acidification. Hydrobiologia 534: 109–115.CrossRefGoogle Scholar
  21. Krause-Dellin, D. & C. Steinberg, 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia 143: 129–134.CrossRefGoogle Scholar
  22. Lieder U., 1996. Crustacea: Cladocera: Bosminidae. Gustav Fisher Verlag, Stuttgart.Google Scholar
  23. Nixdorf, B. & M. Hemm, 2001. Braunkohlentagebauseen in Deutschland – Gegenwärtiger Kenntnisstand über wasserwirtschaftliche Belange von Braunkohlentagebaurestlöchern. In Umweltbundesamt (Hrsg.), UBA Texte 35/01.Google Scholar
  24. Nixdorf B., K. Wollmann & R. Deneke, 1998. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In: Geller W., H. Klapper W. Salomons (eds) Acidic mining lakes. Springer: 147–167.Google Scholar
  25. Nixdorf, B., D. Lessmann & C. E. W. Steinberg, 2003. The importance of chemical buffering for pelagic and benthic colonization in acidic waters. Water, Air, and Soil Pollution 3: 27–46.CrossRefGoogle Scholar
  26. Nixdorf, B., D. Lessmann & R. Deneke, 2005. Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies. Ecological Engineering 24: 67–73.CrossRefGoogle Scholar
  27. Schartau, A. K. L., B. Walseng, T. Nøst & G. Halvorsen, 2000. Freshwater crustaceans as monitors of long-range transported air pollutants. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 27: 2484–2487.Google Scholar
  28. Simon J., 1997. Resampling: The New Statistics, 2nd ed. Textbook to the Resampling Stats software.Google Scholar
  29. Simon, T. P. (ed.), 2002. Biological Response Signatures: Patterns in Biological Indicators for assessing Freshwater Aquatic Assemblages. CRC Press, Boca Raton, FL.Google Scholar
  30. Smirnov, N. N., 1971. [Chydoridae of the World Fauna], Fauna SSSR. Rakoobraznye. Nauka, Leningrad. [In Russian].Google Scholar
  31. Smirnov N. N., 1996. Cladocera: the Chydorinae and Saycinae (Chydoridae) of the world. In: Dumont, H. J. (eds) Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic, Amsterdam.Google Scholar
  32. Steinberg, C. E. W. (ed.), 2003. Ecology of Humic Substances in Freshwaters. Springer, Berlin, Heidelberg.Google Scholar
  33. Steinberg, C. E. W., H. Schäfer, J. Tittel & W. Beisker, 1998. Phytoplankton composition and biomass spectra created by flow cytometry and zooplankton composition in mining lakes of different states of acidification. In: Geller, W., H. Klapper & W. Salomons (eds) Acidic mining lakes. Springer: 127–145.Google Scholar
  34. Uimonen-Simola, P. & K. Tolonen, 1987. Effects of recent acidification on Cladocera in small clear-water lakes studied by means of sedimentary remains. Hydrobiologia 145: 343–351.CrossRefGoogle Scholar
  35. Walseng, B., N. D. Yan & A. K. Schartau, 2003. Littoral microcrustacean (Cladocera and Copepoda) indicators of acidification in Canadian Shield lakes. Ambio 32: 208–213.PubMedCrossRefGoogle Scholar
  36. Weatherley, N. S., G. P. Rutt, S. P. Thomas & S. J. Ormerod, 1991. Liming acid streams: Aluminium toxicity to fish in mixing zones. Water, Air & Soil Pollution 55: 345–353.CrossRefGoogle Scholar
  37. Wollmann, K., R. Deneke, B. Nixdorf & G. Packroff, 2000. Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4). Hydrobiologia 433: 3–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Freshwater ConservationBrandenburg University of Technology at CottbusBad SaarowGermany

Personalised recommendations