Advertisement

Hydrobiologia

, Volume 594, Issue 1, pp 141–152 | Cite as

Low filtering rates of Daphnia magna in a hypertrophic lake: laboratory and in situ experiments using synthetic microspheres

  • M. Sahuquillo
  • M. G. G. Melão
  • M. R. MiracleEmail author
Cladocera

Abstract

Zooplankton grazing was measured in Albufera of València (Spain), a shallow turbid hypertrophic lagoon dominated by filamentous bluegreens, during the period of Daphnia magna growth, to evaluate the role of this cladoceran in maintaining a clear water phase which takes place after flushing for rice cultivation practices. We found extremely low ingestion and clearance rates (CR) on latex beads in situ, using a Haney trap suggesting potentially strong inhibition of grazing by the filamentous cyanobacteria, still flourishing in the lagoon. To test the effect of filaments, we undertook laboratory feeding experiments using six different dilutions of the lagoon water to vary filament concentrations, and four different bead concentrations. A highly significant power function between CR and water dilution associated with filament concentrations was found, indicating that the ability of Daphnia to exploit smaller edible algae and thereby control phytoplankton growth would depend on filament concentration levels in the lagoon. From our results only the two more diluted treatments, 9 × 103 and 18 × 103 filament ml−1 showed CRs not far from the range of what would be normally expected on the basis of the general relationship of feeding rate as a function of total food concentration. This means that at lower food concentrations, filaments reduce D. magna CR by increasing total food concentration beyond the incipient limiting level, as well as by moderate mechanical interference with the animal’s feeding. However, at lagoon water concentrations above 25% (corresponding to filament concentrations of 75 × 105 filaments ml−1), extremely low CR’s, which did not respond to any food addition, were obtained for D. magna. From these results we can infer that at concentrations beyond the above-mentioned critical level, feeding inhibition by filamentous cyanobacteria is most probably due entirely to mechanical interference.

Keywords

Cladocera Eutrophication Grazing Cyanobacteria Microspheres 

Notes

Acknowledgements

We want to specially thank E. Vicente for his help with the in situ experiment and constant support in the lab, to Robert Hart for his revision of the manuscript and to the personal of Albufera Natural Park and Oficina Técnica Devesa Albufera for facilities during field work. We wish to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for provide to M.G.G Melão a post-doctorate fellowship at the Universidad de València (Spain).

References

  1. Bradt, S. & M. J. Villena, 2002. Detection of microcystins in the coastal lagoon La Albufera de Valencia by an enzyme-linked immunosorbent assay (ELISA). Limnetica 20: 187–196.Google Scholar
  2. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Ilkowska-Hillbricht, H. Kurazawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  3. Burns, C. W., 1968. The relationship between body size of filter-feeding Cladocera and maximum size of particle ingested. Limnology and Oceanography 13: 675–678.Google Scholar
  4. Darchambeau, F. & I. Thys, 2005. In situ filtration responses of Daphnia galeata to changes in food quality. Journal of Plankton Research 27: 227–236.CrossRefGoogle Scholar
  5. Davidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica 19: 21–26.Google Scholar
  6. DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypertrophic Dutch lakes: evidence for exclusion of large bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography 46: 2054–2060.CrossRefGoogle Scholar
  7. Gilbert, J. J. & M. W. Durand, 1990. Effect of Anabaena flos-aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biology 24: 577–596.CrossRefGoogle Scholar
  8. Gliwicz, Z. M., 1990a. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97.CrossRefGoogle Scholar
  9. Gliwicz, Z. M., 1990b. Daphnia growth at different concentrations of blue-green filaments. Archiv für Hydrobiologie 120: 51–65.Google Scholar
  10. Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.CrossRefGoogle Scholar
  11. Gulati, R. D., 1978. The ecology of common planktonic crustacea of the freshwaters in the Netherlands. Hydrobiologia 59: 101–102.CrossRefGoogle Scholar
  12. Gulati, R. D., M. Bronkhorst & E. Van Donk, 2001. Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. Journal of Plankton Research 23: 705–718.CrossRefGoogle Scholar
  13. Haney, J. F., 1971. An in situ method for the measurement of zooplankton grazing rates. Limnology and Oceanography 16: 970–977.Google Scholar
  14. Haney, J. F., 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnology and Oceanography 30: 397–411.Google Scholar
  15. Hawkins, P. R. & W. Lampert, 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of a filamentous cyanobacterium. Limnology and Oceanography 34: 1084–1088.Google Scholar
  16. Infante, A. & S. E. B. Abella, 1985. Inhibition of Daphnia by Oscillatoria in Lake Washington. Limnology and Oceanography 30: 1046–1052.Google Scholar
  17. Jagtman, E., D. T. van der Molen & S. Vermij, 1992. The influence of flushing on nutrient dynamics, composition and density of algae and transparency in Valuwemeer, The Netherlands. Hydrobiologia 233: 187–196.CrossRefGoogle Scholar
  18. Lampert, W., 1987. Feeding and nutrition in Daphnia. In Peters, R. H. & R. de Bernardi (eds), Daphnia. Memorie dell’Istituto Italiano di Idrobiologia 45: 143–192.Google Scholar
  19. McMahon, J. W. & R. H. Rigler, 1965. Feeding rate of Daphnia magna Strauss in different foods labelled with radioactive phosphorous. Limnology and Oceanography 10: 105–113.Google Scholar
  20. Miracle, M. R. & M. Sahuquillo, 2002. Changes of life-history traits and size in Daphnia magna during a clear-water phase in a hypertrophic lagoon (Albufera of Valencia, Spain). Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 28: 1203–1208.Google Scholar
  21. Moss, B., D. Stephen, D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrients and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1650.CrossRefGoogle Scholar
  22. Oltra, R. & M. R. Miracle, 1992. Seasonal succession of zooplankton populations in the hypertrophic lagoon Albufera of Valencia (Spain). Archiv für Hydrobiologie 124: 187–204.Google Scholar
  23. Peters, R. H. & J. A. Downing, 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.CrossRefGoogle Scholar
  24. Porter K. G., J. Gerritsen & J. D. Orcutt Jr., 1982. The effect of food concentration on swimming patterns, feeding behaviour, ingestion, assimilation and respiration by Daphnia. Limnology and Oceanography 27: 935–949.Google Scholar
  25. Ringelberg, J. & K. Royackers, 1985. Food uptake in hungry cladocerans. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 199–207.Google Scholar
  26. Romo, S. & M. R. Miracle, 1993. Long-term periodicity of Planktothrix agardhii, Pseudanabaena galeata and Geitlerinema sp. in a shallow hypertrophic lagoon, Albufera of Valencia (Spain). Archiv für Hydrobiologie 126: 469–486.Google Scholar
  27. Romo, S. & M. R. Miracle, 1994. Population dynamics and ecology of subdominant phytoplankton species in a shallow hypertrophic lake (Albufera of Valencia, Spain). Hydrobiologia 273: 37–56.CrossRefGoogle Scholar
  28. Romo, S. & M. R. Miracle, 1995. Diversity of the phytoplankton assemblages of a polymictic hypertrophic lake. Archiv für Hydrobiologie 132: 363–384.Google Scholar
  29. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London.Google Scholar
  30. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin Fisheries Research Board of Canada 167: 207–211.Google Scholar
  31. Vicente, E. & M. R. Miracle, 1992. The coastal lagoon Albufera de Valencia: an ecosystem under stress. Limnetica 8: 87–100.Google Scholar
  32. Villena, M. J. & S. Romo, 2003. Temporal changes of cyanobacteria in the largest coastal Spanish lake. Archiv für Hydrobiologie Supplements – Algological Studies 109: 593–608.Google Scholar
  33. Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnology and Oceanography 23: 1238–1245.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. Sahuquillo
    • 1
  • M. G. G. Melão
    • 2
  • M. R. Miracle
    • 1
    Email author
  1. 1.Departament de Microbiologia i Ecologia, Facultat de BiologiaUniversitat de ValènciaBurjassotSpain
  2. 2.Departamento de HidrobiologiaUniversidade Federal de São CarlosSao CarlosBrazil

Personalised recommendations