, Volume 594, Issue 1, pp 175–185 | Cite as

Formation of morphological defences in response to YOY perch and invertebrate predation in two Daphnia species coexisting in a mesotrophic lake

  • Malorie GélinasEmail author
  • Bernadette Pinel-AlloulEmail author
  • Miroslaw Ślusarczyk


This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch.


Tail spine ratio D. pulicaria Helmet ratio D. mendotae YOY yellow perch Chaoborus Leptodora 



This study was financed through grants from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant) and from the Québec Ministry of Education (FQRNT: Team Grant) to B.P.A. and by a post-doctoral fellowship to M.S and a scholarship grant to M.G. from the GRIL (Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique, Université de Montréal). We thank Alexandra Rutherford, Karène Gélinas and G. Méthot for field assistance and Louise Cloutier for the taxonomic identification of the chaoborids. We thank two anonymous reviewers for valuable comments on an earlier version of the manuscript. We also thank John Chételat who improved the language of the manuscript. The study was presented as an oral communication to the VIIth international symposium on Cladocera, 3–9 September 2005, Herzberg, Switzerland.


  1. Brancelj, A., T. Celhar & M. Sisko, 1996. Four different head shapes in Daphnia hyalina (Leydig) induced by the presence of larvae of Chaoborus flavicans (Meigen). Hydrobiologia 339: 37–45.CrossRefGoogle Scholar
  2. Brett, M. T., 1992. Chaoborus and fish-mediated influences on Daphnia longispina population structure, dynamics and life history strategies. Oecologia 89: 69–77.CrossRefGoogle Scholar
  3. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science. 150: 28–35.PubMedCrossRefGoogle Scholar
  4. Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.CrossRefGoogle Scholar
  5. Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator induced morphology in Daphnia. Oecologia 78: 361–367.CrossRefGoogle Scholar
  6. Gélinas, M., B. Pinel-Alloul & M. Ślusarczyk, 2007. Alternative antipredator responses two coexisting Daphnia species to negative size selection by YOY perch (in press).Google Scholar
  7. Gonzalez, M. J. & A. J. Tessier, 1997. Habitat segregation and interactive effects of multiple predators on a prey assemblage. Freshwater Biology 38: 179–191.CrossRefGoogle Scholar
  8. Graeb, B. D. S., J. M. Dettmers, D. H. Wahl & C. E. Caceres, 2004. Fish size and prey availability affect growth, survival, prey selection, and foraging behaviour of larval yellow perch. Transactions of the American Fisheries Society 133: 504–514.CrossRefGoogle Scholar
  9. Hansen, M. J. & D. H. Wahl, 1981. Selection of small Daphnia pulex by yellow perch fry in Oneida Lake, New York. Transaction of the American Fisheries Society 110: 64–71.CrossRefGoogle Scholar
  10. Havel, J. E. & S. I. Dodson, 1985. Environmental cues for cyclomorphosis in Daphnia retrocurva Forbes. Freshwater Biology 15: 469–478.CrossRefGoogle Scholar
  11. Hülsmann, S., J. Vijverberg, M. Boersma & W. M. Mooij, 2004. Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: a maladaptive response? Journal of Plankton Research 26: 535–543.CrossRefGoogle Scholar
  12. Kolar, C. S. & D. H. Walh, 1998. Daphnid morphology deters fish predators. Oecologia 116: 556–564.CrossRefGoogle Scholar
  13. Krylov, P. I., 1992. Density-dependent predation of Chaoborus flavicans on Daphnia longispina in a small lake: the effect of prey size. Hydrobiologia 239: 131–140.CrossRefGoogle Scholar
  14. Lampert, W. & H. G. Wolf, 1986. Cyclomorphosis in Daphnia cucullata: morphometric and population genetic analyses. Journal of Plankton Research 8: 289–303.CrossRefGoogle Scholar
  15. Larsson, P. & S. I. Dodson, 1993. Chemical communication in planktonic animals. Archiv für Hydrobiologie 129: 129–155.Google Scholar
  16. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  17. Lazzaro, X., 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–168.CrossRefGoogle Scholar
  18. Lindholm, M., 2002. Predator-induced cyclomorphosis of Daphnia laevis (Branchiopda, Cladocera) in a tropical floodplain (Okavango Delta, Botswana). Crustaceana 75: 803–814.CrossRefGoogle Scholar
  19. Makino, W., H. Kato, N. Takamura, H. Mizutani, N. Katano & H. Mikami, 2001. Did chironomid emergence release Daphnia from fish predation and lead to a Daphnia-driven clear-water phase in Lake Towada, Japan? Hydrobiologia. 442: 309–317.CrossRefGoogle Scholar
  20. Mayer, C. M. & D. H. Wahl, 1997. The relationship between prey selectivity and growth and survival in a larval fish. Canadian Journal of Fisheries and Aquatic Sciences 54: 1504–1512.CrossRefGoogle Scholar
  21. McNaught, A. S., R. L. Kiesling & A. Ghadouani, 2004. Changes to zooplankton community structure following colonization of a small lake by Leptodora kindti. Limnology and Oceanography 49: 1239–1249.CrossRefGoogle Scholar
  22. Mehner, T., M. Plewa, S. Hülsmann & S. Worischka, 1998. Gape-size dependent feeding of age-0 perch (Perca fluviatilis L.) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Archiv für Hydrobiologie 142: 191–207.Google Scholar
  23. Mills, E. L. & J. L. Forney, 1983. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Transaction of the American Fisheries Society 112: 154–161.CrossRefGoogle Scholar
  24. Pastorok, R. A., 1981. Prey vulnerability and size selection by Chaoborus larvae. Ecology 62: 1311–1324.CrossRefGoogle Scholar
  25. Pinel-Alloul, B., 1995a. Les invertébrés prédateurs du zooplancton. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris, 541–564.Google Scholar
  26. Pinel-Alloul, B., 1995b. Impacts des prédateurs invertébrés sur les communautés aquatiques. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris, 628–647.Google Scholar
  27. Pourriot, R., 1995. Réponses adaptatives du zooplancton à la prédation. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris, 610–627.Google Scholar
  28. Riessen, H. P., 1999. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Canadian Journal of Fisheries and Aquatic Sciences 56: 2487–2494.CrossRefGoogle Scholar
  29. Riessen, H. P. & J. D. Young, 2005. Daphnia defense strategies in fishless lakes and ponds: one size does not fit all. Journal of Plankton Research 27: 531–544.CrossRefGoogle Scholar
  30. Sell, A., 2000. Morphological defences induced in situ by the invertebrate predator Chaoborus: comparison of responses between Daphnia pulex and D. rosea. Oecologia 125: 150–160.CrossRefGoogle Scholar
  31. Slusarczyk, M., B. Pinel-Alloul & M. Gélinas, 2005. On the ultimate reasons for the summer diapause of Daphnia in a permanent lake. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 29: 1440–1442.Google Scholar
  32. Sokal, R. R. & F. J. Rolf, 1995. Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New York, New York, USA.Google Scholar
  33. Soranno, P. A., S. R. Carpenter & S. M. Moegenburg, 1993. Dynamics of the phantom midge: implications for zooplankton. In Carpenter, S. R. & J. F. Kitchell (eds), The Trophic Cascade of Lakes. Cambridge University Press. Cambridge, 103–115.Google Scholar
  34. Spaak, P. & M. Boersma, 1997. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish. Aquatic Ecology 31: 89–98.CrossRefGoogle Scholar
  35. Stibor, H & W. Lampert, 1993. Estimating the size at maturity in field populations of Daphnia (Cladocera). Freshwater Biology 30: 433–438.CrossRefGoogle Scholar
  36. Stibor, H. & W. Lampert, 2000. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88: 129–138.CrossRefGoogle Scholar
  37. Tollrian, R., 1993. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. Journal of Plankton Research 15: 1309–1318.CrossRefGoogle Scholar
  38. Tollrian, R., 1994. Fish-kairomone induced morphological changes in Daphnia lumholtzi (Sars). Archiv für Hydrobiologie 130: 69–75.Google Scholar
  39. Tollrian, R. & S. I. Dodson, 1999. Inducible defences in Cladocera: constraints, costs and multipredator enrvironments. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defences. Princeton University Press, New Jersey, 177–202.Google Scholar
  40. Wagner, A., S. Hülsmann, H. Dörner, M. Janssen, U. Kahl, T. Mehner & J. Benndorf, 2004. Initiation of the midsummer decline of Daphnia as related to predation, non-consumptive mortality and recruitment: a balance. Archiv für Hydrobiologie 160: 1–23.CrossRefGoogle Scholar
  41. Weber, A. & S. Declerck, 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360: 89–99.CrossRefGoogle Scholar
  42. Yurista, P. M., 2000. Cyclomorphosis in Daphnia lumholtzi induced by temperature. Freshwater Biology 43: 207–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.GRIL, Département de Sciences BiologiquesUniversité de MontréalMontrealCanada
  2. 2.Department of HydrobiologyUniversity of WarsawWarsawPoland

Personalised recommendations