, Volume 596, Issue 1, pp 57–66 | Cite as

Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada

  • Jennifer R. Kelly
  • Heather Proctor
  • John P. Volpe
Primary Research Paper


Eelgrass beds represent important habitats for marine organisms, but are in decline in many coastal areas around the world. On Cortes Island, British Columbia, Canada, oysters coexist regionally with native eelgrass (Zostera marina L.), but eelgrass is typically absent directly seaward of oyster beds (the “below-oyster cobble zone”). We compared assemblage structure of nekton (fish and swimming macroinvertebrates) and epibenthos (macroinvertebrates and macroalgae) between eelgrass bed and below-oyster habitats. We sampled the intertidal zone on Cortes Island at low tide using two methods: quadrats to enumerate epibenthic macroinvertebrates and macroalgae, and beach seines to enumerate fish and swimming macroinvertebrates. Using multivariate analysis of similarity (ANOSIM), we found that the structure of nektonic and epibenthic assemblages associated with below-oyster cobble zones were significantly different from those in eelgrass-beds. Univariate measures showed that nektonic species richness and abundance were significantly higher in eelgrass beds than in below-oyster cobble habitat, whereas epibenthic species richness and abundance were significantly higher in below-oyster habitat.


Seagrass British Columbia Epibenthic invertebrates Fish Macroalgae 



We wish to acknowledge logistical and field support of Mathew Brechtel, Michael, Sierra, Marg and Sully Sullivan, Heidi, Ruth and Fred Zwickel, and Chris Williamson. Research was supported by an NSERC Post Graduate Scholarship to JRK and an NSERC Discovery Grant and NSERC/SSHRC MCRI to JPV. We also thank two anonymous reviewers for their comments.

Supplementary material

10750_2007_9057_MOESM1_ESM.doc (85 kb)
Classification and taxonomic authorities of taxa found in field surveys. Presence (+) or absence (-) is indicated for each habitat type found (eelgrass bed and below-oyster habitat). (DOC 85 KB)


  1. BCSGA, 2003. Information resource centre. BC Shellfish Growers Association Accessed 21 Feb. 2005.
  2. Belbin, L., 1991. Semi-strong hybrid scaling, a new ordination algorithm. Journal of Vegetation Science 2: 491–496.CrossRefGoogle Scholar
  3. Belbin, L., 1993. PATN (Pattern Analysis Package) Technical Reference. CSIRO, Australia.Google Scholar
  4. Castel, J., J.-P. Labourg, V. Escaravage, I. Auby & M. E. Garcia, 1989. Influence of seagreass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuarine, Coastal and Shelf Science 28: 71–85.CrossRefGoogle Scholar
  5. Coleman, F. C. & S. L. Williams, 2002. Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends in Ecology and Evolution 17: 40–44.CrossRefGoogle Scholar
  6. Connolly, R. M., 1994. The role of seagrass as preferred habitat for juvenile Sillaginodes punctata (Cuv. & Val.) (Sillaginidae, Pisces): habitat selection or feeding? Journal of Experimental Marine Biology and Ecology 180: 39–47.CrossRefGoogle Scholar
  7. deZwaan, A. & J. M. F. Babarro, 2001. Studies on the causes of mortality of the estuarine bivalve Macoma balthica under conditions of (near) anoxia. Marine Biology 138: 1021–1028.CrossRefGoogle Scholar
  8. Dumbauld, B., K. M. Brooks & M. H. Posey, 2001. Response of an estuarine benthic community to application of the pesticide carbaryl and cultivation of Pacific oysters (Crassostrea gigas) in Willapa Bay, Washington. Marine Pollution Bulletin 42: 826–844.PubMedCrossRefGoogle Scholar
  9. Environment Canada, 2001. A Canadian Perspective on the Precautionary Approach/Principle. Accessed 21 February 2007.
  10. Everett, R., G. M. Ruiz & J. T. Carlton, 1995. Effect of oyster mariculture on submerged aquatic vegetation – an experimental test in a Pacific Northwest estuary. Marine Ecology Progress Series 125: 205–217.CrossRefGoogle Scholar
  11. Goodman, J. L., K. A. Moore & W. C. Dennison, 1995. Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany 50: 37–47.CrossRefGoogle Scholar
  12. Griffin, K., 1997. Eelgrass ecology and commercial oyster cultivation in Tillamook Bay, Oregon. Tillamook Bay National Estuary Project Report #11-97.Google Scholar
  13. Heck, K. L. & R. J. Orth, 1980. Seagrass habitats: the roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. In Kennedy, V. S. (ed.), Estuarine Perspectives. Academic Press, New York, 449–464.Google Scholar
  14. Hines, A. H., 1982. Coexistence in a kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecological Monographs 52: 179–198.CrossRefGoogle Scholar
  15. Holmer, M. & E. J. Bondgaard, 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquatic Botany 70: 29–38.CrossRefGoogle Scholar
  16. Ingold, A. & D. C. Havill, 1984. The influence of sulphide on the distribution of higher plants in salt marshes. Journal of Ecology 72: 1043–1054.CrossRefGoogle Scholar
  17. Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  18. Joseph, V., A. Locke & J.-G. J. Godin, 2006. Spatial distribution of fishes and decapods in eelgrass (Zostera marina L.) and sandy habitats of a New Brunswick estuary, eastern Canada. Aquatic Ecology 40: 111–123.CrossRefGoogle Scholar
  19. Linehan, J. E., R. S. Gregory & D. C. Schneider, 2001. Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters. Journal of Experimental Marine Biology and Ecology 263: 25–44.CrossRefGoogle Scholar
  20. Lubbers, L., W. R. Boynton & W. M. Kemp, 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants. Marine Ecology Progress Series 65: 1–14.CrossRefGoogle Scholar
  21. Manderson, J. P., B. A. Phelan & A. W. Stoner, 2000. Predator–prey relations between age-1+ summer flounder (Paralichthys dentatus L.) and age-0 winter flounder (Pseudopleuronectes americanus Walbaum): predator diets, prey selection and effects of sediments and macrophytes. Journal of Experimental Marine Biology and Ecology 251: 17–39.PubMedCrossRefGoogle Scholar
  22. Marsh, G. A., 1973. The Zostera epifaunal community in the York River, Virginia. Chesapeake Science 14: 87–97.CrossRefGoogle Scholar
  23. Mattila, J., G. Chaplin, M. R. Eilers, K. L. Heck, J. P. O’Neal & J. F. Valentine, 1999. Spatial and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA). Journal of Sea Research 41: 321–332.CrossRefGoogle Scholar
  24. Murphy, M. L., S. W. Johnson & D. J. Csepp, 2000. A comparison of fish assemblages in eelgrass and adjacent subtidal habitats near Craig, Alaska. Alaska Fishery Research Bulletin 7: 11–21.Google Scholar
  25. Orth, R. & J. vanMontfrans, 1982. Structural analysis of benthic communities associated with vegetated and unvegetated habitats. In Orth, R. J. & J. vanMontfrans (eds), Interactions of Resident Consumers in a Temperate Estuarine Seagrass Community. Virginia Institute of Marine Sciences, Vaucluse Shores, Virginia, USA, 232 pp.Google Scholar
  26. Orth, R., K. L. Heck & J. Montfrans, 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator–prey relationships. Estuaries 7: 339–350.CrossRefGoogle Scholar
  27. Pihl, L., S. Baden, N. Kautsky, P. Rönnbäck, T. Söderqvist, M. Troell & H. Wennhage, 2006. Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuarine, Coastal and Shelf Science 67: 123–132.CrossRefGoogle Scholar
  28. Quayle, D., 1964. Distribution of introduced marine mollusca in British Columbia waters. Journal of the Fisheries Research Board of Canada 21: 1155–1164.Google Scholar
  29. Reise, K., 1985. Tidal Flat Ecology. Springer-Verlag, Berlin, 191 pp.Google Scholar
  30. Reise, K., E. Herre & M. Sturm, 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. Helgoländer Meeresuntersuchungen 43: 413–433.Google Scholar
  31. Romano, J. P. & M. Wolf, 2005. Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association 100: 94–108.CrossRefGoogle Scholar
  32. Rooker, J. R., G. J. Holt & S. A. Holt, 1998. Vulnerability of newly settled red drum (Sciaenops ocellatus) to predatory fish: is early-life survival enhanced by seagrass meadows? Marine Biology 131: 145–151.CrossRefGoogle Scholar
  33. Ruesink, J. L., H. S. Lenihan, A. C. Trimble, K. W. Heiman, F. Micheli, J. E. Byers & M. C. Kay, 2005. Introduction of non-native oysters: ecosystem effects and restoration implications. Annual Review of Ecology, Evolution and Systematics 36: 643–689.CrossRefGoogle Scholar
  34. Sheridan, P. & T. J. Minello, 2003. Nekton use of different habitat types in seagrass beds of Lower Laguna Madre, Texas. Bulletin of Marine Science 72: 37–61.Google Scholar
  35. Simenstad, C. & K. I. Fresh, 1995. Influence of intertidal aquaculture on benthic communities in Pacific Northwest estuaries: scales of disturbance. Estuaries 18: 43–70.CrossRefGoogle Scholar
  36. Sogard, S. M. & K. W. Able, 1991. A comparision of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods. Estuarine, Coastal and Shelf Science 33: 501–519.CrossRefGoogle Scholar
  37. Summerson, H. C. & C. H. Peterson, 1984. Role of predation in organizing benthic communities of a temperate-zone seagrass bed. Marine Ecology Progress Series 15: 63–77.CrossRefGoogle Scholar
  38. Trianni, M. S., 1996. The Influence of Commercial Oyster Culture Activities on the Benthic Infauna of Arcata Bay. Humboldt State University, Humboldt, CA.Google Scholar
  39. Villarreal, G., 1995. Alterations in the structure of the macrobenthic community at Bahia Falsa, Mexico, related to the culture of Crassostrea gigas. Ciencias Marinas 21: 373–386.Google Scholar
  40. Wyllie-Echeverria, S., T. Mumford, J. Gaydos & S. Buffum, 2003. Z. marina declines in San Juan County, WA. Westcott Bay Taskforce Mini-Workshop.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jennifer R. Kelly
    • 1
    • 2
  • Heather Proctor
    • 1
  • John P. Volpe
    • 1
    • 3
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of BiologyDalhousie UniversityHalifaxCanada
  3. 3.School of Environmental StudiesUniversity of VictoriaVictoriaCanada

Personalised recommendations