, Volume 593, Issue 1, pp 227–232 | Cite as

Workshop on rotifers in ecotoxicology

  • Terry W. SnellEmail author
  • Célia Joaquim-Justo


The aim of the workshop on rotifers in ecotoxicology was to stimulate discussions on new developments in the field. Discussions about the use of biomolecular tools indicate that gene expression analysis with rotifers should be available in the next few years. Such analyses will be a great asset as they enable ecotoxicologists to study molecular mechanisms of toxicity. Rotifers also appear as useful tools in the risk assessment of pharmaceuticals and their metabolites that find their way into aquatic ecosystems because their sensitivity to some of these substances is higher than that of cladocerans and algae. The nature and extent of the impact of potential endocrine disruptors on aquatic invertebrates is another poorly resolved issue for which rotifers are a promising tool. Indeed, rotifers seem to be particularly sensitive to androgenic and anti-antiandrogenic substances, whereas copepods and cladocerans are typically more affected by estrogens and juvenile hormone-like compounds. Besides their usefulness in these emerging fields of aquatic ecotoxicology, it was emphasized that research with rotifers on basic issues like, e.g., toxicant interference with predation, competition, or interspecific and interclonal variation in ecotoxicological tests is still needed.


Ecotoxicology Gene expression Endocrine disruption 


  1. Andersen, H. R., L. Wollenberger, B. Halling-Sorensen & K. O. Kusk, 2001. Development of copepod nauplii to copepodites—A parameter for chronic toxicity including endocrine disruption. Environmental Toxicology and Chemistry 20: 2821–2829.PubMedCrossRefGoogle Scholar
  2. Baldwin, W. S., S. E. Graham, D. Shea & G. A. LeBlanc, 1997. Metabolic androgenization of female Daphnia magna by the xenoestrogens 4-Nonylphenol. Environmental Toxicology and Chemistry 16: 1905–1911.CrossRefGoogle Scholar
  3. Bechmann, R. K., 1999. Effect of the endocrine disrupter nonylphenol on the marine copepod Tisbe battagliai. Science of the Total Environment 233: 33–46.CrossRefGoogle Scholar
  4. Breitholtz, M. & B. E. Bengtsson, 2001. Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinipes. Marine Pollution Bulletin 42: 879–886.PubMedCrossRefGoogle Scholar
  5. Cargouet, M., D. Perdiz, A. Mouatassim-Souali, S. Tamisier-Karolak & Y. Levi, 2004. Assessment of river contamination by estrogenic compounds in Paris area. Science of the Total Environment 324: 55–66.PubMedCrossRefGoogle Scholar
  6. Charoy, C. P., C. R. Janssen, G. Persoone & P. Clément, 1995. The swimming behaviour of Brachionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals. Aquatic Toxicology 32: 271–282.CrossRefGoogle Scholar
  7. Dodson, S. I., C. M. Merritt, L. Torrentera, K. M. Winter, C. K. Tornehl, & K. Girvin, 1999. Dieldrin reduces male production and sex ratio in Daphnia galeata mendotae. Toxicology and Industrial Health 15: 192–199.PubMedCrossRefGoogle Scholar
  8. Gallardo, W. G., A. Hagiwara, Y. Tomita, K. Soyano & T. W. Snell, 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Müller. Hydrobiologia 358: 113–120.CrossRefGoogle Scholar
  9. Gomes, R. L., H. E. Deacon, K. M. Lai, J. W. Birkett, M. D. Scrimshaw & J. N. Lester, 2004. An assessment of the bioaccumulation of estrone in Daphnia magna. Environmental Toxicology and Chemistry 23: 105–108.PubMedCrossRefGoogle Scholar
  10. Guillette L. J. Jr., D. B. Pickford, D. A. Crain, A. A. Rooney & H. F. Percival, 1996. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. General and Comparative Endocrinology 101: 32–42.PubMedCrossRefGoogle Scholar
  11. Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131: 5–17.PubMedCrossRefGoogle Scholar
  12. Hense, B. A., G. F. Severin, G. Welzl & K. W. Schramm, 2004. Effects of 17 alpha-ethinylestradiol on zoo- and phytoplankton in lentic microcosms. Analytical and Bioanalytical Chemistry 378: 716–724.PubMedCrossRefGoogle Scholar
  13. Isidori, M., M. Lavorgna, A. Nardelli, A. Parrella, L. Previtera & M. Rubino, 2005. Ecotoxicity of naproxen and its phototransformation products. Science of the Total Environment 348: 93–101.PubMedCrossRefGoogle Scholar
  14. Janssen, C. R., M. D. Ferrando & G. Persoone, 1994. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus. IV. Rotifer behaviour as a sensitive and rapid sublethal test criterion. Ecotoxicology and Environmental Safety 28: 244–255.PubMedCrossRefGoogle Scholar
  15. Jobling, S., D. Sheahan, J. A. Osborne, P. Matthiessen & J. P. Sumpter, 1996. Inhibition of testicular growth in rainbow trout (Onchorynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry 15: 194–202.CrossRefGoogle Scholar
  16. Jones, O. A. H., N. Voulvoulis & J. N. Lester, 2001. Human pharmaceuticals in the aquatic environment a review. Environmental Technology 22: 1383–1394.PubMedCrossRefGoogle Scholar
  17. Kime, D. E., 1995. The effects of pollution on reproduction in fish. Reviews in Fish Biology and Fisheries 5: 52–96.CrossRefGoogle Scholar
  18. Kolodziej, E. P., J. L. Gray & D. L. Sedlak, 2003. Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. Environmental Toxicology and Chemistry 22: 2622–2692.PubMedCrossRefGoogle Scholar
  19. Lai, K. M., M. D. Scrimshaw & J. N. Lester, 2002. Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Applied and Environmental Microbiology 68: 859–864.PubMedCrossRefGoogle Scholar
  20. LeBlanc, G. A. & J. B. McLachlan, 2000. Changes in the metabolic elimination profile of testosterone following exposure of the crustacean Daphnia magna to tributyltin. Ecotoxicology and Environmental Safety 45: 296–303.PubMedCrossRefGoogle Scholar
  21. Marcial, H. S., A. Hagiwara & T. W. Snell, 2002. Effect of known and suspected endocrine disrupting chemicals on the demographic parameters of the copepod Tigriopus japonicus. Fisheries Science 68: 863–866.Google Scholar
  22. Marcial, H. S., A. Hagiwara & T. W. Snell, 2003. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environmental Toxicology and Chemistry 22: 3025–3030.PubMedCrossRefGoogle Scholar
  23. Marcial, H. S., A. Hagiwara & T. W. Snell, 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis Müller. Hydrobiologia 546: 569–575.CrossRefGoogle Scholar
  24. Matthiessen, P. & P. E. Gibbs, 1998. Critical appraisal of the evidence for tributyltin mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry 17: 37–43.CrossRefGoogle Scholar
  25. Okay, O. S., L. Tolun, L. Tüfekçi, B. Karacik, A. Kungolos, P. Samaras, C. Papadimitriou, M. Petala & V. Tsiridis, 2005. Comparison of several toxicity tests applied to complex wastewaters and mussel biomarkers in receiving waters. Journal of Environmental Science and Health 40: 1525–1541.PubMedGoogle Scholar
  26. Olmstead, A. W. & G. A. LeBlanc, 2000. Effects of endocrine-active chemicals on the development of sex characteristics of Daphnia magna. Environmental Toxicology and Chemistry 19: 2107–2113.CrossRefGoogle Scholar
  27. Olmstead, A. W. & G. A. LeBlanc, 2001. Temporal and quantitative changes in sexual reproductive cycling of the cladoceran Daphnia magna by a juvenile hormone analog. Journal of Experimental Zoology 290: 148–155.PubMedCrossRefGoogle Scholar
  28. Olmstead, A. W. & G. A. LeBlanc, 2003. Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna. Environmental Health Perspectives 111: 919–924.PubMedCrossRefGoogle Scholar
  29. Pickering, A. D. & J. P. Sumpter, 2003. Comprehending endocrine disrupters in aquatic environments. Environmental Science and Technology 37: 331A–336A.PubMedCrossRefGoogle Scholar
  30. Preston, B. L., T. W. Snell, T. L. Robertson & B. J. Dingmann, 2000. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors. Environmental Toxicology and Chemistry 19: 2923–2928.CrossRefGoogle Scholar
  31. Radix, P., G. Severin, K. W. Schramm & A. Kettrup, 2002. Reproduction disturbances of Brachionus calyciflorus (rotifer) for the screening of environmental endocrine disrupters. Chemosphere 47: 1097–1101.PubMedCrossRefGoogle Scholar
  32. Severin, G. F., G. Welzl, I. Jüttner, G. Pfister & K. W. Schramm, 2003. Effects of nonylphenol on zooplankton in aquatic microcosms. Environmental Toxicology and Chemistry 22: 2733–2738.PubMedCrossRefGoogle Scholar
  33. Snell, T. W. & M. J. Carmona, 1995. Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 14: 415–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Laboratory of Animal Ecology and EcotoxicologyUniversity of LiègeLiegeBelgium

Personalised recommendations