Skip to main content
Log in

Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The response of clonal growth and ramet morphology to water depth (from 60 to 260 cm) and sediment type (sand versus organic clay) was investigated for the stoloniferous submersed macrophyte Vallisneria natans in an outdoor pond experiment. Results showed that water depth significantly affected clonal growth of V. natans in terms of clone weight, number of ramets, number of generations, clonal radius and stolon length. V. natans showed an optimal clonal growth at water depths of 110–160 cm, but at greater depths clonal growth was severely retarded. A high allometric effect was exhibited in ramet morphology. Along the sequentially produced ramet generations, ramet weight and plant height decreased while stolon length and the root:leaf weight ratio increased. When using ramet generations as covariate, sediment type rather than water depth more strongly affected the ramet characteristics. For plants grown in clay, ramet weight, ramet height and stolon length were greater, and plants exhibited lower root:leaf weight ratio. These data suggest that water depth and sediment type have differential effects on clonal growth of V. natans: Water depth appears primarily to affect numerical increase in ramets and spatial spread, whereas sediment type mainly affects biomass accumulation and biomass allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barko, J. L., M. S. Adams & N. L. Clesceri, 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. Journal of Aquatic Plant Management 24: 1–10.

    Google Scholar 

  • Barrett, S. C. H., C. G. Echert & B. C. Husband, 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany 44: 105–145.

    Article  Google Scholar 

  • Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415: 147–154.

    Article  Google Scholar 

  • Bloom, A. J., F. S. Chapin & H. A. Mooney, 1985. Resource limitation in plants–an economic analogy. Annual Review of Ecology and Systematics 16: 363–392.

    Google Scholar 

  • Cain, M. L., 1994. Consequences of foraging in clonal plant species. Ecology 75: 933–944.

    Article  Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi depth. Canadian Journal of Fisheries and Aquatic Sciences 42: 701–709.

    Article  Google Scholar 

  • Chambers, P. A. & J. Kalff, 1987. Light and nutrients in the control of aquatic plant community structure. 1. In situ experiments. Journal of Ecology 75: 611–619.

    Article  Google Scholar 

  • Clevering, O. A. & M. P. J. Hundscheid, 1998. Plastic and non-plastic variation in growth of newly established clones of Scirpus (Bolboschoenus) maritimus L. grown at different water depths. Aquatic Botany 62: 1–17.

    Article  Google Scholar 

  • Coleman, J. S., K. D. M. McConnaughay & D. D. Ackerly, 1994. Interpreting phenotypic variation in plants. Trends in Ecology and Evolution 9: 187–191.

    Article  Google Scholar 

  • de Kroon, H., J. F. Stuefer, M. Dong & H. J. During, 1994. On plastic and non-plastic variation in clonal plant morphology and its ecological significance. Folia Geobotanica et Phytotaxonomica 29: 123–138.

    Google Scholar 

  • de Kroon, H. & M. J. Hutchings, 1995. Morphological plasticity in clonal plants: the foraging concept reconsidered. Journal of Ecology 83: 143–152.

    Article  Google Scholar 

  • Dong, M. & B. Alaten, 1999. Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology 141: 53–58.

    Article  Google Scholar 

  • Duarte, C. M. & K. Sand-Jensen, 1990. Seagrass colonization: patch formation and patch growth in Cymodocea nodosa. Marine Ecology-Progress Series 65: 193–200.

    Google Scholar 

  • Gafny, S. & A. Gasith, 1999. Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantageous of a window of opportunity. Aquatic Botany 62: 249–267.

    Article  Google Scholar 

  • Grace, J. B., 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.

    Article  Google Scholar 

  • Huber, H. & M. J. Hutchings, 1997. Differential response to shading in orthotropic and plagiotropic shoots of the clonal herb Glechoma hirsute. Oecologia 112: 485–491.

    Article  Google Scholar 

  • Hutchings, M. J. & H. de Kroon, 1994. Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research 25: 159–238.

    Google Scholar 

  • Hutchinson, G. E., 1975. Treatise on Limnology. III. Limnological Botany. John Wiley, New York.

    Google Scholar 

  • Lowden, R. M., 1982. An approach to the taxonomy of Vallisneria L. (Hydrocharitaceae). Aquatic Botany 13: 269–298.

    Article  Google Scholar 

  • Maurer, D. A. & J. B. Zedler, 2002. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131: 279–288.

    Article  Google Scholar 

  • McComb, A. J. & R. J. Lukatelich, 1986. Nutrients and Plant Biomass in Australian Estuaries, with Particular Reference to South-Western Australia. In De Decker, P. & W. P. Williams (eds), Limnology in Australia. Junk Publishers, Melbourne, 433–455.

    Google Scholar 

  • Middeboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Milne, J. M., K. J. Murphy & S. M. Thomaz, 2006. Morphological variation in Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) Solms in relation to aquatic vegetation type and the environment in the floodplain of the Rio Paraná, Brazil. Hydrobiologia 570: 19–25.

    Article  Google Scholar 

  • Novozamsky, I., V. J. G. Houba, E. Temminghoff & J. J. van der Lee, 1984. Determination of ‘total’ N and ‘total’ P in a single soil digest. Netherlands Journal of Agriculture Sciences 32: 322–324.

    Google Scholar 

  • Oborny, B. & M. L. Cain, 1997. Models of Spatial Spread and Foraging in Clonal Plants. In de Kroon, H. & J. van Groenendael (eds), The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, 155–183.

    Google Scholar 

  • Philbrick, C. T. & D. H. Les, 1996. Evolution of aquatic angiosperm reproductive systems. BioScience 46: 813–826.

    Article  Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwater Biology 9: 1–11.

    Article  CAS  Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  • Shi, R. H., 1994. Agricultural and Chemical Analysis for Soil. Chinese Agriculture Press, Beijing.

    Google Scholar 

  • Smith, H., 1982. Light quality, photoreception, and plant strategy. Annual Review of Plant Physiology 33: 481–518.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., C. C. Tanner & J. P. S. Sukias, 2002. Effects of water depth and substrate on growth and morphology of Eleocharis sphacelata: implications for culm support and internal gas transport. Aquatic Botany 73: 93–106.

    Article  Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12: 37–126.

    Article  Google Scholar 

  • Strand, J. A. & S. E. B. Weisner, 2001. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology 89: 166–175.

    Article  Google Scholar 

  • Thomaz, S. M., P. A. Chambers, S. A. Pierini & G. Pereira, 2007. Effects of phosphorus and nitrogen amendments on the growth of Egeria najas. Aquatic Botany 86: 191–196.

    Article  CAS  Google Scholar 

  • Terrados, J., C. M. Duarte & W. J. Kenworthy, 1997. Is the apical growth of Cymodocea nodosa dependent on clonal integration? Marine Ecology-Progress Series 158: 103–110.

    Google Scholar 

  • van Groenendael, J., J. Klimes, J. M. Klimessova & R. J. J. Hendriks, 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 351: 1331–1339.

    Article  Google Scholar 

  • Wigand, C., J. Wehr, K. Limburg, B. Gorham, S. Longergan & S. Findlay, 2000. Effect of Vallisneria americana (L.) on community structure and ecosystem function in lake mesocosms. Hydrobiologia 418: 137–146.

    Article  Google Scholar 

  • Wolfer, S. R. & D. Straile, 2004. Spatio-temporal dynamics and plasticity of clonal architecture in Potamogeton perfoliatus. Aquatic Botany 78: 307–318.

    Article  Google Scholar 

  • Xiao, K., D. Yu & J. Wang, 2006. Habitat selection in spatially heterogeneous environments: a test of foraging behavior in the clonal submerged macrophyte Vallisneria spiralis L. Freshwater Biology 51: 1552–1559.

    Article  Google Scholar 

  • Xiao, K., D. Yu, X. Xu & W. Xiong, 2007. Benefits of clonal integration between interconnected ramets of Vallisneria spiralis in heterogeneous light environments. Aquatic Botany 86: 76–82.

    Article  Google Scholar 

  • Xie, Y. & D. Yu, 2003. The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquatic Botany 75: 311–321.

    Article  Google Scholar 

  • Xie, Y., S. An & B. Wu, 2005. Resource allocation in the submerged plant Vallisneria natans related to sediment type, rather than watercolumn nutrients. Freshwater Biology 50: 391–402.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jinwang Wang and Heyun Wang for their assistance during the experiment. We appreciate Eric McCubbin’s help for improving our English. This research was supported by the National Natural Science Foundation of China (30600050 and 30430070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, K., Yu, D. & Wu, Z. Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans . Hydrobiologia 589, 265–272 (2007). https://doi.org/10.1007/s10750-007-0740-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0740-4

Keywords

Navigation