Skip to main content
Log in

Zooplankton response to extreme drought in a large subtropical lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Plankton data from 1997 to 2005 were used to examine impacts of a managed draw-down, subsequent drought and resulting historic low water levels (during 2000 and 2001) on the zooplankton of Lake Okeechobee, Florida. Prior to the drought the lake supported less than 150 ha of submerged vegetation. Following the drought, over 15,000 ha of submerged vegetation developed around the lake shore and conditions favored greater survival of age 0 fish. The zooplankton changed significantly from the pre- to post-drought period, including: (a) a near-complete loss of all dominant species of cladocerans and rotifers; and (b) an abrupt transition to a community with over 80% of total biomass comprised of Arctodiaptomus dorsalis, a calanoid copepod previously described as being resistant to fish predation. These changes persisted over a 5 year post-drought sampling period. In contrast, there were no systematic changes in biomass of bacteria, phytoplankton, inedible cyanobacteria, algal cell size, suspended solids, or any other physical or chemical attributes known to affect zooplankton in shallow lakes. Evidence points towards increased predation by fish, and perhaps invertebrates, as factors responsible for loss of cladocerans and rotifers following the drought, and indicates a need for future research to link changes in water level to shifts in predation pressure in this and other shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA, 1989. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Bartsch, L. A., W. B. Richardson & M. B. Sandheinrich, 2004. Zebra mussels (Driessena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis. Hydrobiologia 495: 59–72.

    Article  Google Scholar 

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Canadian Journal of Fisheries and Aquatic Sciences 40: 1813–1819.

    Google Scholar 

  • Beaver, J. R. & K. E. Havens, 1996. Seasonal and spatial variation in zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwater Biology 36: 45–56.

    Article  Google Scholar 

  • Benndorf, J. B., H. Schultz, A. Benndorf, A., R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe, S. Reichel & A. Kohler, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypereutrophic Bautzen Reservoir. Limnologica 19: 97–110.

    CAS  Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1978. Prey selection by the cyclopoid copepods Mesocyclops edax and Cyclops vicinus. Verhandlungen der Internationale Vereinigung der Limnologie 20: 2505–2510.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1981. The impact of predation by cyclopoid copepods on zooplankton. Verhandlungen der Internationale Vereinigung der Limnologie 21: 1573–1577.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  Google Scholar 

  • Bull, L. A., D. D. Fox, D. W. Brown, L. J. Davis, S. J. Miller & J. G. Wullschleger, 1995. Fish distribution in limnetic areas of Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 333–342.

    Google Scholar 

  • Chigbu, P., 2004. Assessment of the potential impact of the mysid shrimp, Neomysis mercedis, on Daphnia. Journal of Plankton Research 26: 295–306.

    Article  Google Scholar 

  • Crisman, T. L. & J. R. Beaver, 1990. Applicability of biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200: 177–185.

    Article  Google Scholar 

  • Dockendorf, K. J. & M. S. Allen, 2005. Age-0 black crappie abundance and size in relation to zooplankton density, stock abundance, and water clarity in three Florida lakes. Transactions of the American Fisheries Society 134: 172–183.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Elmore, J. L., B. C. Cowell & D. S. Vodopich, 1984. Biological communities of three subtropical Florida lakes of different trophic character. Archiv für Hydrobiologie 100: 455–478.

    Google Scholar 

  • Gliwicz, Z. M. & W. Lampert, 1990. Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702.

    Article  Google Scholar 

  • Guest, W. C., R. W. Drenner, S. T. Threlkeld, F. D. Martin & J. D. Smith, 1990. Effects of gizzard shad and threadfin shad on zooplankton and young-of-the-year white crappie production. Transactions of the American Fisheries Society 100: 529–536.

    Article  Google Scholar 

  • Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.

    Article  Google Scholar 

  • Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton – phytoplankton—nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.

    Article  Google Scholar 

  • Havens, K. E., T. L. East, J. Marcus, P. Essex, B. Bolan, S. Raymond & J. R. Beaver, 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwater Biology 45: 21–32.

    Article  Google Scholar 

  • Havens, K. E., D. D. Fox, S. Gornak & C. Hanlon, 2005. Aquatic vegetation and largemouth bass population responses to water level variations in Lake Okeechobee, Florida (USA). Hydrobiologia 539: 225–237.

    Article  Google Scholar 

  • Havens, K. E., M. C. Harwell, M. A. Brady, B. Sharfstein, T. L. East, A. J. Rodusky, D. Anson & R. P. Maki, 2002. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake. The Scientific World Journal 2: 949–965.

    Google Scholar 

  • Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.

    Article  Google Scholar 

  • Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.

    Article  Google Scholar 

  • Hessen, D. O., 1992. Nutrient element limitation of zooplankton production. American Naturalist 140: 799–814.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley & J. Jasper, 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Holanov, S. H. & J. C. Tash, 1978. Particulate and filter feeding in threadfin shad, Dosoroma petenense, at different light intensities. Journal of Fish Biology 13: 619–625.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, R. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielge, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willen & M. Widner, 2005a. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. Branco, B. Huszar & F. Scasso, 2005b. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.). Tropical Eutrophic Lakes: Their Restoration and Management. Science Publishers, Enfield, 331–359.

  • Jones, B. I., 1987. Lake Okeechobee eutrophication research and management. Aquatics 9: 21–26.

    Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method for estimating algal numbers and the statistical basis for estimations by counting. Hydrobiologia 11: 393–424.

    Article  Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford, 228–265.

    Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen (in press). Littoral trophic structure and effects on aquatic plants differ substantially between temperate and subtropical shallow lakes. Freshwater Biology.

  • Mitra, A. & K. J. Flynn, 2005. Predator-prey interactions: is ecological stoichiometry sufficient when good food goes bad? Journal of Plankton Research 27: 393–399.

    Article  Google Scholar 

  • Moss, B., J. Madgwick & G. Phillips, 1997. A guide to the restoration of nutrient-enriched shallow lakes. W.W. Hawes, U.K.

    Google Scholar 

  • Nordlie, F. G., 1976. Plankton communities of three central Florida lakes. Hydrobiologia 48: 65–78.

    CAS  Google Scholar 

  • Ortega-Mayagoitia, E., X. Armengol & C. Rojo, 2000. Structure and dynamics of zooplankton in a semi-arid wetland, the national park of Las Tablas de Daimiel (Spain). Wetlands 20: 629–638.

    Article  Google Scholar 

  • Phlips, E. J., F. J. Aldridge, P. Hansen, P. V. Zimba, J. Ihnat, M. Conroy & P. Ritter, 1993. Spatial and temporal variability of trophic state parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie 128: 437–458.

    Google Scholar 

  • PlaВman, T., G. Maier & H. B. Stich, 1997. Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring. Journal of Plankton Research 19: 1069–1079.

    Article  Google Scholar 

  • Riessen, H. P., W. J. O’Brien & B. Loveless, 1984. An analysis of the components of Chaoborus predation on zooplankton and the calculation of relative prey vulnerabilities. Ecology 65: 514–522.

    Article  Google Scholar 

  • Rogers, M. & M. Allen (in press). Affects of altered hydrology on ecosystem resilience to hurricanes. Ecosystems.

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Stansfield, J. H., M. R. Perrow, L. D. Tenchm, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342: 229–240.

    Article  Google Scholar 

  • Tugend, K. I. & M. S. Allen, 2000. Temporal dynamics of zooplankton community composition and mean size at Lake Wauberg, Florida. Florida Scientist 63: 142–154.

    Google Scholar 

  • Warren, G. L., M. J. Vogel & D. D. Fox, 1995. Trophic and distributional dynamics of Lake Okeechobee sublittoral benthic invertebrate communities. Archiv für Hydrobiologie, Advances in Limnology 45: 317–332.

    Google Scholar 

  • Williamson, C., 1984. Laboratory and field experiments on the feeding ecology of the cyclopoid copepod Mesocyclops edax. Freshwater Biology 14: 575–585.

    Article  Google Scholar 

  • Williamson, C., 1986. The swimming and feeding behavior of Mesocyclops. Hydrobiologia 134: 11–19.

    Article  Google Scholar 

  • Young, J. D. & H. P. Riessen, 2005. The interaction of Chaoborus size and vertical distribution determines predation effects on Daphnia. Freshwater Biology 50: 993–1006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Havens.

Additional information

Handling editor: S.I. Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havens, K.E., East, T.L. & Beaver, J.R. Zooplankton response to extreme drought in a large subtropical lake. Hydrobiologia 589, 187–198 (2007). https://doi.org/10.1007/s10750-007-0738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0738-y

Keywords

Navigation