Hydrobiologia

, Volume 586, Issue 1, pp 357–365 | Cite as

Relationships among nitrogen and total phosphorus, algal biomass and zooplankton density in the central Amazonia lakes

Primary Research Paper

Abstract

The relationship among concentrations of total nitrogen (TN), total phosphorus (TP), algal biomass (Chl) and the density and size of individuals of the zooplankton community were studied for the dry season (November 1999–January 2000) at 20 lakes of the Central Amazonia. The study was conducted along a productivity gradient to identify the existence of resource or predator-dependent patterns on the primary producers of the trophic web. A strong positive relationship was observed between the log Chl and TN (r2 = 0.88, P = 0.000) and to log Chl and log TP (r2 = 0.85, P = 0.000) in a simple linear regression. However, when both variables were running together in a multiple regression, TN alone explained every variation of algal biomass (r2 = 0.89, PTN = 0.022, PTP = 0.233). The total density of the zooplankton showed a positive correlation with log Chl (r2 = 0.53, P = 0.000) and the large zooplankton (>0.5 mm) was found to be a more positive function of the phytoplankton (r2 = 0.65) than the density of the small ones (<0.5 mm, r2 = 0.44). Results show that complex food web interactions could be responsible for patterns in tropical systems. We contend that Chl variation in tropical lake systems is controlled by TN and TP, but the predictor power of the TN increase the fit of the model in analysis and can be use alone to access the variability in algae biomass to Amazonian tropical lakes. We also agree that the density of large zooplankton individuals is regulated by the biomass of primary producers. Hence we concluded that the resource-dependent hypothesis is supported in these systems.

Keywords

Phytoplankton Nutrients Zooplankton Trophic interaction Floodplain lakes Amazon 

References

  1. Arditi, R. & L. R. Ginzburg, 1989. Coupling in predator-prey dynamics: ratio-dependence. Journal of Theoretical Biology 139: 311–326.CrossRefGoogle Scholar
  2. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  3. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  4. Carpenter, S. R., H. E. Kitchell, K. Cottingham, D. E. Schindler, D. L. Christensen, D. M. Post & N. Votchick, 1996. Chlorophyll variability, nutrient input, and grazing: evidence from whole-lake experiments. Ecology 77: 725–735.CrossRefGoogle Scholar
  5. Chu Koo, F. W., 2000. Estudo das interações peixes/zooplâncton no lago Camaleão, um lago de várzea da Amazônia Central, Brasil. Dissertation, Instituto Nacional de Pesquisas da Amazônia/Fundação Universidade do Amazonas, Manaus.Google Scholar
  6. Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography 19: 767–773.CrossRefGoogle Scholar
  7. Edmondson, W. T., 1971. Counting zooplankton samples – methods for processing samples and developing data. In Edmondson, W. T. & G. G. Windberg (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP by Blackwell Scientific Pubications, Oxford and Edinburgh.Google Scholar
  8. Ginzburg, L. R. & H. R. Akçakaya, 1992. Consequences of ratio-dependent predation for steady-state properties of ecosystems. Ecology 73: 1536–1543.CrossRefGoogle Scholar
  9. Goulding, M., M. L. Carvalho & E. G. Ferreira, 1988. Rio Negro, Rich Life in Poor Water: Amazonian Diversity and Foodchain Ecology as seen through Fish Communities. SPB Academic Publishing, The Netherlands.Google Scholar
  10. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population, control, and competition. American Naturalist 104: 421–425.Google Scholar
  11. Hardy, E. R., B. Robertson & W. Koste, 1984. About the relationship between the zooplankton and fluctuating water levels of Lago Camaleão, a Central Amazonian varzea lake. Amazoniana 9: 43–52.Google Scholar
  12. Huszar, V. E. M., N. F. Caraco, F. Roland & J. Cole, 2006. Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry 79: 239–250, <http://www.springerlink.com.w10087.dotlib.com.br/content/ept3886p65596287/?p=aae0e8430f9a4d0b94a638575e6ddd93&pi=5>.Google Scholar
  13. Junk, W. J., 1997. The Central Amazon Floodplain: Ecology of a Pulsing System. Springer Publishers, Berlin, 525.Google Scholar
  14. Lampert, W., 1987. Predictability in lake ecosystems: the role of biotic interactions in ecological studies. In Schulze, E. D. & H. Zwölfer (eds), Ecological Studies. Springer Publishers, Berlin, 333–346.Google Scholar
  15. Lewis, W. M. Jr., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 28: 210–213.Google Scholar
  16. Mayer, J., M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342/343: 165–174.CrossRefGoogle Scholar
  17. Mazumder, A., 1994. Patterns of algal biomass in dominant odd- vs. even-link lake ecosystems. Ecology 75: 1141–1149.CrossRefGoogle Scholar
  18. Melack, J. M. & B. R. Forsberg, 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. In McChlin, M. E., R. L. Victoria & J. E. Richey (eds), The Biogeochemistry of the Amazon Basin. Oxford University Publishers, New York, 235–276.Google Scholar
  19. Nõges, T., 1997. Zooplankton-phytoplankton interactions in lakes Võrtsjärv, Peipsi (Estonia) and Yaskhan (Turkmenia). Hydrobiologia 342/343: 175–183.CrossRefGoogle Scholar
  20. Rodrigues, M. S., 1994. Biomassa e produção fitoplanctônica do Lago Camaleão (Ilha de Marchantaria, Amazonas). Ph.D Thesis, Instituto Nacional de Pesquisas da Amazônia/ Fundação Universidade do Amazonas, Manaus.Google Scholar
  21. Rognerud, S. & G. Kjellberg, 1984. Relationships between phytoplankton and zooplankton biomass in large lakes. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 22: 666–671.Google Scholar
  22. Rubao, J., C. Chen, J. W. Budd, D. J., Schwad, D. Beletsky, G. L. Fahnenstiel, T. H. Johengen, H. Vanderploeg, B. Eadie, J. Cotner, W. Gardner & M. Bundy, 2002. Influences of suspend sediments on the ecosystem in Lake Michigan: a 3-D coupled bio-physical modeling experiment. Ecological Modelling 152: 169–190.CrossRefGoogle Scholar
  23. Sarvala, J., H. Helminen, V. Saarikari, S. Salonen & K. Vuorio, 1998. Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity. Hydrobiologia 363: 81–95.CrossRefGoogle Scholar
  24. Setaro, F. V. & J. M. Melack, 1984. Responses of phytoplankton to experimental nutrient enrichment in Amazon floodplain lake. Limnology and Oceanography 29: 972–984.Google Scholar
  25. Sioli, H., 1984. The Amazon – Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. W. Junk Publishers.Google Scholar
  26. Smith, V. H. & J. Shapiro, 1981. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies? Environmental Science & Technology 15: 444–512.CrossRefGoogle Scholar
  27. Strickland, J. D. H. & T. R. Parsons, 1968. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada Publishers, Ottawa.Google Scholar
  28. Tonolli, V., 1971. Zooplankton - methods of collection. In Edmondson, W. T. & G. G. Windberg (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP by Blackwell Scientific Publishers, Oxford and Edinburgh.Google Scholar
  29. Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  30. Zaret, T. M., A. H. Devol & A. dos Santos, 1981. Nutrient addition experiments in lago Jacaretinga, Central Amazon Basin. Verhandlungen der internationale vereinigung für theoretische und Angewandte Limnologie 22: 261–724.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Remote Sensing DivisionNational Institute for Space Research (INPE)São José dos CamposBrazil
  2. 2.Ecology Researches CenterNational Institute for Amazonia Research (INPA)Manaus, AmazoniaBrazil

Personalised recommendations