Abstract
In the marine sciences, continuous monitoring systems have been regarded as very useful tools to provide continuous high frequency measurements of many parameters. We analyse here a high frequency time series of temperature measurements recorded every 10 min between 1997 and 2004 in the macro tidal Seine estuary (France) by a Marel buoy, an automatic monitoring network for littoral environment. We have adapted multi-scale data analysis methods to deal with the many missing values present in the time series. A power spectral density analysis is performed over time scales spanning 5 decades, from 20 min to more than 7 years. A scale invariant behaviour of the form \({E\left(f \right)\approx f^{-\beta}}\) with β = 2.2 is revealed for scales below 5 h. Over this scaling range, we have performed structure functions analysis, and shown that the Seine river temperature data exhibit turbulent-like intermittent properties, with multifractal statistics. The multifractal exponents obtained possess some similarities with passive scalar turbulence results.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bennet, A. F. & K. L. Denman, 1985. Phytoplankton patchiness: inferences from particle statistics. Journal of Marine Research 43: 307–335.
Benzi, R., S. Ciliberto, C. Baudet, G. Ruiz Chavarria & C. Tripiccione, 1993. Extended self similarity in the dissipation range of fully developed turbulence. Europhysics Letters 24: 275–279.
Berthome, J. P., 1994. MAREL: un réseau automatisé de veille pour l’environnement littoral. Equinoxe (nantes) 47–48: 34–35.
Blain, S., J. Guillou, P. Tréguer, P. Woerther, L. Delauney, E. Follenfant, O. Gontier, M. Hamon, B. Leildé, A. Masson, C. Tartu & R. Vuillemin, 2004. High frequency monitoring of the coastal environment using the MAREL buoy. Journal of Environmental Monitoring 6: 569–575.
Carbone, V., P. Veltri & R. Bruno, 1996. Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws. Nonlinear Processes in Geophysics 3: 247–261.
Chang, G. C. & T. D. Dickey, 2001. Optical and physical variability on timescales from minutes to the seasonal cycle on the New England shelf: July 1996 to June 1997. Journal of Geophysical Research 106: 9435–9453.
Chavez, F. P., J. T. Pennington, R. Herlien, H. Jannasch, G. Thurmond & G. E. Friederich, 1997. Moorings and drifters for real-time interdisciplinary oceanography. Journal of Atmospheric and Oceanic Technology 14: 1199–1211.
Corrsin, S., 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. Journal of Applied Physics 22: 469– 473.
Dickey, T. D., 1991. The emergence of concurrent high resolution physical and bio-optical measurements in the upper ocean and their applications. Review of Geophysics 29: 383–413.
Dickey, T. D., R. H. Douglass, D. Manov, D. Bogucki, P. C. Walter & P. Petrelis, 1993. An experiment in two-way communication with a multivariable moored system in coastal waters. Journal of Atmospheric and Oceanic Technology 10: 637–644.
Frisch, U., 1995. Turbulence, the Legacy of A. N. Kolmogorov, Cambridge University Press.
Gardiner, C. W., 1983. Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. Springer-Verlag.
Ingle, V. K. & J. G. Proakis, 2000. Digital Signal Processing Using MATLAB, Brooks/Cole Publishing Company.
Ivanova, K. & T. Ackerman, 1999. Multifractal charaterization of liquid water in clouds. Physical Review E 59: 2778–2782.
Kantz, H. & T. Schreiber, 1997. Nonlinear Time Series Analysis, Cambridge University Press.
Kolmogorov, A. N., 1941. Doklady Akademii nauk SSSR 30: 299.
Kraichnan, R. H., 1967. Inertial ranges in two-dimensional turbulence. The Physics of Fluids 9: 1937–1943.
Marsch, E. & S. Liu, 1993. Structure functions and intermittency of velocity fluctuations in the inner solar wind. Annales Geophysicae 11: 227–238.
Marshak, A., A. Davis, W. Wiscombe & R. Cahalan, 1997. Scale invariance in liquid water distributions in marine stratocumulus. Part II: multifractal properties and intermittency issues. Journal of the Atmospheric Sciences 54: 1423–1444.
Monin, A. S. & A. M. Yaglom, 1975. Statistical Fluid Mechanics: Mechanics of Turbulence. The MIT press.
Nobach, H., E. Muller & C. Tropea, 1998. Efficient estimation of power spectral density from Laser Doppler Anemometer data. Experiments in Fluids 24: 449–509.
Obukhov, A., 1949. Structure of the temperature field in a turbulent flow. Izvestiya Akademii Nauk SSSR, Seriya Geograficheskaia I Jeofiz 13: 55– 69.
Platt, T. & K. L. Denman, 1975. Spectral analysis in ecology. Annual Review of Ecology and Systematics 6: 189–210.
Ruiz Chavarria, G., C. Baudet & S. Ciliberto, 1995. Extended self-similarity of passive scalars in fully developed turbulence. Europhysics Letters 32: 413–420.
Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya & D. Marsan, 1997. Multifractal cascade dynamics and turbulent intermittency. Fractals 5: 427–471.
Schmitt, F., S. Lovejoy & D. Schertzer, 1995. Multifractal analysis of the Greenland ice-core projet climate data. Geophysical Research Letters 22: 1689–1692.
Schmitt, F., D. Schertzer, S. Lovejoy & Y. Brunet, 1996. Multifractal temperature and flux of temperature variance in fully developed turbulence. Europhysics Letters 34: 195–200.
Seuront, L. & F. Schmitt, 2001. Describing intermittent processes in the ocean. Univariate and bivariate multiscale procedures. In Muller, P. & C. Garret (eds), Stirring and Mixing in a Stratified Ocean. Proceedings of ‘Aha Huliko’ a Hawaiian Winter Workshop, SOEST, University of Hawaii, 129–144.
Seuront, L. & F. Schmitt, 2004. Eulerian and Lagrangian properties of biophysical intermittency in the ocean. Geophysical Research Letters 31: 03306.
Seuront, L. & F. Schmitt, 2005. Multiscaling statistical procedures for te exploaration of biophysical couplingd in intermittent turbulence: part I. theory. Deep Sea Research II 52: 1308–1324.
Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer, S. Lovejoy & S. Frontier, 1996. Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophysical Research Letters 23: 3591–3594.
Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer & S. Lovejoy, 1999. Universal multifractal analysis as a tool to characterise multiscale intermittent patterns; example of phytoplankton distribution in turbulent coastal waters. Journal of Plankton Research 21: 877–922.
Souissi, S., L. Seuront, F. G. Schmitt & V. Ginot, 2005. Describing space-time patterns in aquatic ecology using IBMs and scaling and multiscaling approaches. Nonlinear Analysis. Real World Applications 6: 705–730.
Woerther, P., 1998. MAREL: Mesures Automatisées en Réseau pour l’Environnement Littoral. L’eau, L’industrie, Les nuisances 217: 67–72.
Acknowledgements
Financial support was provided by the program Seine-Aval. This work is a contribution to the French PNEC ART4. The authors thank R. Hocdé, P. Riou & O. Gontier for helping to get access to the MAREL database. Discussions with L. Seuront & N. Fernandez, and useful suggestions by the referees are acknowledged. A. Rhodes and R. Waters are thanked for their help concerning the English language.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dur, G., Schmitt, F.G. & Souissi, S. Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy. Hydrobiologia 588, 59–68 (2007). https://doi.org/10.1007/s10750-007-0652-3
Issue Date:
DOI: https://doi.org/10.1007/s10750-007-0652-3

