Skip to main content

Advertisement

Log in

Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy

  • ECSA38
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the marine sciences, continuous monitoring systems have been regarded as very useful tools to provide continuous high frequency measurements of many parameters. We analyse here a high frequency time series of temperature measurements recorded every 10 min between 1997 and 2004 in the macro tidal Seine estuary (France) by a Marel buoy, an automatic monitoring network for littoral environment. We have adapted multi-scale data analysis methods to deal with the many missing values present in the time series. A power spectral density analysis is performed over time scales spanning 5 decades, from 20 min to more than 7 years. A scale invariant behaviour of the form \({E\left(f \right)\approx f^{-\beta}}\) with β = 2.2 is revealed for scales below 5 h. Over this scaling range, we have performed structure functions analysis, and shown that the Seine river temperature data exhibit turbulent-like intermittent properties, with multifractal statistics. The multifractal exponents obtained possess some similarities with passive scalar turbulence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bennet, A. F. & K. L. Denman, 1985. Phytoplankton patchiness: inferences from particle statistics. Journal of Marine Research 43: 307–335.

    Article  Google Scholar 

  • Benzi, R., S. Ciliberto, C. Baudet, G. Ruiz Chavarria & C. Tripiccione, 1993. Extended self similarity in the dissipation range of fully developed turbulence. Europhysics Letters 24: 275–279.

    Article  Google Scholar 

  • Berthome, J. P., 1994. MAREL: un réseau automatisé de veille pour l’environnement littoral. Equinoxe (nantes) 47–48: 34–35.

    Google Scholar 

  • Blain, S., J. Guillou, P. Tréguer, P. Woerther, L. Delauney, E. Follenfant, O. Gontier, M. Hamon, B. Leildé, A. Masson, C. Tartu & R. Vuillemin, 2004. High frequency monitoring of the coastal environment using the MAREL buoy. Journal of Environmental Monitoring 6: 569–575.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, V., P. Veltri & R. Bruno, 1996. Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws. Nonlinear Processes in Geophysics 3: 247–261.

    Google Scholar 

  • Chang, G. C. & T. D. Dickey, 2001. Optical and physical variability on timescales from minutes to the seasonal cycle on the New England shelf: July 1996 to June 1997. Journal of Geophysical Research 106: 9435–9453.

    Article  Google Scholar 

  • Chavez, F. P., J. T. Pennington, R. Herlien, H. Jannasch, G. Thurmond & G. E. Friederich, 1997. Moorings and drifters for real-time interdisciplinary oceanography. Journal of Atmospheric and Oceanic Technology 14: 1199–1211.

    Article  Google Scholar 

  • Corrsin, S., 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. Journal of Applied Physics 22: 469– 473.

    Article  Google Scholar 

  • Dickey, T. D., 1991. The emergence of concurrent high resolution physical and bio-optical measurements in the upper ocean and their applications. Review of Geophysics 29: 383–413.

    Google Scholar 

  • Dickey, T. D., R. H. Douglass, D. Manov, D. Bogucki, P. C. Walter & P. Petrelis, 1993. An experiment in two-way communication with a multivariable moored system in coastal waters. Journal of Atmospheric and Oceanic Technology 10: 637–644.

    Article  Google Scholar 

  • Frisch, U., 1995. Turbulence, the Legacy of A. N. Kolmogorov, Cambridge University Press.

  • Gardiner, C. W., 1983. Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. Springer-Verlag.

  • Ingle, V. K. & J. G. Proakis, 2000. Digital Signal Processing Using MATLAB, Brooks/Cole Publishing Company.

  • Ivanova, K. & T. Ackerman, 1999. Multifractal charaterization of liquid water in clouds. Physical Review E 59: 2778–2782.

    Article  CAS  Google Scholar 

  • Kantz, H. & T. Schreiber, 1997. Nonlinear Time Series Analysis, Cambridge University Press.

  • Kolmogorov, A. N., 1941. Doklady Akademii nauk SSSR 30: 299.

    Google Scholar 

  • Kraichnan, R. H., 1967. Inertial ranges in two-dimensional turbulence. The Physics of Fluids 9: 1937–1943.

    Article  Google Scholar 

  • Marsch, E. & S. Liu, 1993. Structure functions and intermittency of velocity fluctuations in the inner solar wind. Annales Geophysicae 11: 227–238.

    Google Scholar 

  • Marshak, A., A. Davis, W. Wiscombe & R. Cahalan, 1997. Scale invariance in liquid water distributions in marine stratocumulus. Part II: multifractal properties and intermittency issues. Journal of the Atmospheric Sciences 54: 1423–1444.

    Article  Google Scholar 

  • Monin, A. S. & A. M. Yaglom, 1975. Statistical Fluid Mechanics: Mechanics of Turbulence. The MIT press.

  • Nobach, H., E. Muller & C. Tropea, 1998. Efficient estimation of power spectral density from Laser Doppler Anemometer data. Experiments in Fluids 24: 449–509.

    Article  Google Scholar 

  • Obukhov, A., 1949. Structure of the temperature field in a turbulent flow. Izvestiya Akademii Nauk SSSR, Seriya Geograficheskaia I Jeofiz 13: 55– 69.

    Google Scholar 

  • Platt, T. & K. L. Denman, 1975. Spectral analysis in ecology. Annual Review of Ecology and Systematics 6: 189–210.

    Article  Google Scholar 

  • Ruiz Chavarria, G., C. Baudet & S. Ciliberto, 1995. Extended self-similarity of passive scalars in fully developed turbulence. Europhysics Letters 32: 413–420.

    Article  Google Scholar 

  • Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya & D. Marsan, 1997. Multifractal cascade dynamics and turbulent intermittency. Fractals 5: 427–471.

    Article  Google Scholar 

  • Schmitt, F., S. Lovejoy & D. Schertzer, 1995. Multifractal analysis of the Greenland ice-core projet climate data. Geophysical Research Letters 22: 1689–1692.

    Article  Google Scholar 

  • Schmitt, F., D. Schertzer, S. Lovejoy & Y. Brunet, 1996. Multifractal temperature and flux of temperature variance in fully developed turbulence. Europhysics Letters 34: 195–200.

    Article  CAS  Google Scholar 

  • Seuront, L. & F. Schmitt, 2001. Describing intermittent processes in the ocean. Univariate and bivariate multiscale procedures. In Muller, P. & C. Garret (eds), Stirring and Mixing in a Stratified Ocean. Proceedings of ‘Aha Huliko’ a Hawaiian Winter Workshop, SOEST, University of Hawaii, 129–144.

  • Seuront, L. & F. Schmitt, 2004. Eulerian and Lagrangian properties of biophysical intermittency in the ocean. Geophysical Research Letters 31: 03306.

    Google Scholar 

  • Seuront, L. & F. Schmitt, 2005. Multiscaling statistical procedures for te exploaration of biophysical couplingd in intermittent turbulence: part I. theory. Deep Sea Research II 52: 1308–1324.

    Article  Google Scholar 

  • Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer, S. Lovejoy & S. Frontier, 1996. Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophysical Research Letters 23: 3591–3594.

    Article  Google Scholar 

  • Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer & S. Lovejoy, 1999. Universal multifractal analysis as a tool to characterise multiscale intermittent patterns; example of phytoplankton distribution in turbulent coastal waters. Journal of Plankton Research 21: 877–922.

    Article  Google Scholar 

  • Souissi, S., L. Seuront, F. G. Schmitt & V. Ginot, 2005. Describing space-time patterns in aquatic ecology using IBMs and scaling and multiscaling approaches. Nonlinear Analysis. Real World Applications 6: 705–730.

    Google Scholar 

  • Woerther, P., 1998. MAREL: Mesures Automatisées en Réseau pour l’Environnement Littoral. L’eau, L’industrie, Les nuisances 217: 67–72.

Download references

Acknowledgements

Financial support was provided by the program Seine-Aval. This work is a contribution to the French PNEC ART4. The authors thank R. Hocdé, P. Riou & O. Gontier for helping to get access to the MAREL database. Discussions with L. Seuront & N. Fernandez, and useful suggestions by the referees are acknowledged. A. Rhodes and R. Waters are thanked for their help concerning the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Schmitt.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dur, G., Schmitt, F.G. & Souissi, S. Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy. Hydrobiologia 588, 59–68 (2007). https://doi.org/10.1007/s10750-007-0652-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0652-3

Keywords

Profiles

  1. F. G. Schmitt