Advertisement

Hydrobiologia

, Volume 586, Issue 1, pp 135–141 | Cite as

Kinetics of nitrate uptake by New Zealand marine macroalgae and evidence for two nitrate transporters in Ulva intestinalis L.

  • T. A. V. Rees
  • B. C. Dobson
  • M. Bijl
  • B. Morelissen
Primary Research Paper

Abstract

Kinetic constants were determined for nitrate uptake in three species, Pterocladiella capillacea (S.G. Gmelin) Santelices et Hommersand (Rhodophyceae, Gelidiales), Ulva intestinalis L. (Chlorophyceae, Ulvales) and Xiphophora chondrophylla (Turner) Montagne ex Harvey (Phaeophyceae, Fucales), of New Zealand macroalgae, with K m values ranging from 10 to 17 μM and V max values from 3 to 65 μmole g−1 dry weight h−1. There was no effect of ammonium on nitrate uptake by Pterocladiella capillacea or Xiphophora chondrophylla. Ammonium inhibited nitrate uptake by 40% in Ulva intestinalis from a site with relatively low seawater ammonium concentrations. In contrast, U. intestinalis from an ammonium-enriched site had lower rates of nitrate uptake that were insensitive to inhibition by ammonium. It is suggested that there are (at least) two transport systems for nitrate in U. intestinalis; a constitutive transporter, which is insensitive to ammonium, and a transporter that is sensitive to ammonium inhibition and down-regulation by ammonium; the implications of this for our understanding of macroalgal blooms is discussed.

Keywords

Ammonium Macroalga Nitrate uptake Uptake kinetics 

Notes

Acknowledgement

We are grateful to the University of Auckland Research Committee for providing financial support.

References

  1. Ahn, O., R. J. Petrell & P. J. Harrison, 1998. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. Journal of Applied Phycology 10: 333–340.CrossRefGoogle Scholar
  2. Barr, N. G. & T. A. V. Rees, 2003. Nitrogen status and metabolism in the green seaweed Enteromorpha intestinalis: an examination of three natural populations. Marine Ecology Progress Series 249: 133–144.Google Scholar
  3. Brenchley, J. L., J. A. Raven & A. M. Johnston, 1997. Resource acquisition in two intertidal fucoid seaweeds, Fucus serratus and Himanthalia elongata: seasonal variation and effects of reproductive development. Marine Biology 129: 367–375.CrossRefGoogle Scholar
  4. Cole, M. L., K. D. Kroeger, J. W. McClelland & I. Valiela, 2006. Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater. Biogeochemistry 77: 199–215.CrossRefGoogle Scholar
  5. Crawford, N. M. & A. D. M. Glass, 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 3: 389–395.CrossRefGoogle Scholar
  6. D’Elia, C. F. & J. A. DeBoer, 1978. Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. Journal of Phycology 14: 266–272.CrossRefGoogle Scholar
  7. Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.Google Scholar
  8. Glass, A. D. M., 2003. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Science 22: 453–470.Google Scholar
  9. Haines, K. C. & P. A. Wheeler, 1978. Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). Journal of Phycology 14: 319–324.CrossRefGoogle Scholar
  10. Hanisak, M. D. & M. M. Harlin, 1978. Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). Journal of Phycology 14: 450–454.CrossRefGoogle Scholar
  11. Harlin, M. M. & J. S. Craigie, 1978. Nitrate uptake by Laminaria longicruris (Phaeophyceae). Journal of Phycology 14: 464–467.CrossRefGoogle Scholar
  12. Harrison, P. J., L. D. Druehl, K. E. Lloyd & P. A. Thompson, 1986. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Marine Biology 93: 29–35.CrossRefGoogle Scholar
  13. Kamer, K., P. Fong, R. Kennison & K. Schiff, 2004. Nutrient limitation of the macroalga Enteromorpha intestinalis collected along a resource gradient in a highly eutrophic estuary. Estuaries 27: 201–208.CrossRefGoogle Scholar
  14. Koroleff, F., 1983. Determination of ammonia. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds) Methods of Seawater Analysis. Verlag Chemie, Weinheim, pp 150–157.Google Scholar
  15. Lavery, P. S. & A. J. McComb, 1991. The nutritional eco-physiology of Chaetomorpha linum and Ulva rigida in Peel Inlet, Western Australia. Botanica Marina 34: 251–260.CrossRefGoogle Scholar
  16. Leigh, E. G., R. T. Paine, J. F. Quinn & T. H. Suchanek, 1987. Wave energy and intertidal productivity. In: Proceedings of the National Academy of Sciences of the United States of America 84: 1314–1318.Google Scholar
  17. Lobban, C. S. & P. J. Harrison, 1994. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge.Google Scholar
  18. Morand, P. & M. Merceron, 2005. Macroalgal population and sustainability. Journal of Coastal Research 21: 1009–1020.CrossRefGoogle Scholar
  19. Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.Google Scholar
  20. Phillips, J. C. & C. L. Hurd, 2004. Kinetics of nitrate, ammonium and urea uptake by four intertidal seaweeds from New Zealand. Journal of Phycology 40: 534–545.CrossRefGoogle Scholar
  21. Ramus, J. 1992. Productivity of seaweeds. In Falkowski, P. G. & A. D. Woodhead (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, 239–255.Google Scholar
  22. Rees, T. A. V., 2003. Safety factors and nutrient uptake by seaweeds. Marine Ecology Progress Series 263: 29–42.Google Scholar
  23. Taylor, R. B. & T. A. V. Rees, 1998. Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnology and Oceanography 43: 600–606.CrossRefGoogle Scholar
  24. Taylor, R. B., J. T. A. Peek & T. A. V. Rees, 1998. Scaling of ammonium uptake by seaweeds to surface area : volume ratio: geographical variation and the role of uptake by passive diffusion. Marine Ecology Progress Series 169: 143–148.Google Scholar
  25. Thomas, T. E. & P. J. Harrison, 1987. Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown under field conditions. Journal of Experimental Marine Biology and Ecology 107: 1–8.CrossRefGoogle Scholar
  26. Thomas, T. E., P. J. Harrison & E. B. Taylor, 1985. Nitrogen uptake and growth of the germlings and mature thalli of Fucus distichus. Marine Biology 84: 267–274.CrossRefGoogle Scholar
  27. Topinka, J. A., 1978. Nitrogen uptake by Fucus spiralis (Phaeophyceae). Journal of Phycology 14: 241–247.CrossRefGoogle Scholar
  28. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • T. A. V. Rees
    • 1
  • B. C. Dobson
    • 1
  • M. Bijl
    • 1
  • B. Morelissen
    • 1
  1. 1.Leigh Marine LaboratoryUniversity of AucklandWarkworthNew Zealand

Personalised recommendations