Skip to main content

Advertisement

Log in

Genetic structure and habitat selection of the tall form Spartina alterniflora Loisel. in China

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spartina alterniflora Loisel., a highly invasive species on the Chinese coast, is a focus of increasing management concerns due to its high expansion rate in tideland and the significant damages on native ecosystems, since its introduction into China in 1979. There are both tall and dwarf forms of the species in China. The tall form with strongly invasive ability has widely expanded. Genetic variation was examined within and among three tall form S. alterniflora populations in Jiangsu Province using amplified fragment length polymorphisms (AFLP) markers. Three populations were sampled along the coastal line, and each population was divided into three subpopulations relating with the three microenvironments: Foreland, mid-marsh and upland. Genetic diversity was low at both the population level (PPB = 22%, HE = 0. 0657 and Hpop = 0.099) and at the species level (PPB = 24.65%, HT = 0.0814 and Hsp = 0.1225). A low level of genetic differentiation among populations was detected based on analyses of coefficients of genetic differentiation (9.51%), Shannon’s diversity index (9.48%) and AMOVA (10.69%). The mean value of Gst among nine subpopulations was 22.02%. Habitat selections may occur and affect the genetic structure of S. alterniflora in the process of its spread because there are 7.2, 3.4 and 5.9% specific bands out of 158 polymorphic bands in foreland, mid-marsh, and upland, respectively. This genetic differentiation may result from seedling survival and colonization success based on the selection of specialized microhabitats. The results indicated that high capability of genetic differentiation within populations and strong adaptability of tall form S. alterniflora may be the reasons for the widespread expansion of the tall form S. alterniflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An, S. Q. & H. C. Chung, 1991. Ecological engineering with Spartina spp. plantation and benefit analyses of prevention of disasters. Journal of Nanjing University Special Issue, 323–328.

  • Ayres, D. R., D. G. Rossi, H. G. Davis & D. R. Strong, 1999. Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA ( RAPDs). Molecular Ecology 8: 1179–1186.

    Article  Google Scholar 

  • Chen, J. Q. & C. H. Chung, 1992. Isozyme studies on the ecotype differentiation of S. alterniflora. In Qin, P. & C. H. Chung (eds), Applied Studies on Spartina. Ocean Science Press, Beijing, 110–116.

    Google Scholar 

  • Chung, C. H., R. Z. Zhuo & G. W. Xu, 2004. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecological Engineering 23: 135–150.

    Article  Google Scholar 

  • Cronberg, N., U. Molau & M. Sonesson, 1997. Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavian. Heredity 78: 293–301.

    Article  Google Scholar 

  • Daehler, C. C., 1998. Variation in self-fertility and the reproductive advantage of self-fertility or an invading plant (Spartina alterniflora). Evolutionary Ecology 12: 553–568.

    Article  Google Scholar 

  • Daehler, C. C., C. K. Anttila, D. R. Ayres, D. R. Strong & J. P. Bailey, 1999. Evolution of a new ecotype of Spartina alterniflora (Poaceae) in San Francisco Bay, California, USA. American Journal of Botany 86: 543–546.

    Article  PubMed  Google Scholar 

  • Demeke, T. R., P. Adams & R. Chibbar, 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPDs): a case study in Brassica. Theoretical and Applied Genetics 84: 990–994.

    Article  CAS  Google Scholar 

  • Deng, Z. F., S. Q. An, Y. B. Zhi & C. F. Zhou, 2006. Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica 26: 2678–2686.

    Google Scholar 

  • Doyle, J., 1991. DNA protocols for plants: CTAB total DNA isolation. Molecular Techniques in Taxonomy, Springer, Berlin, 283–293.

  • Ellstrand, N. C. & K. A. Schierenbeck, 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceeding of the National Academy of Science, USA 97: 7043–7050.

    Google Scholar 

  • Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from mettic distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Gao, Y. & C. E. Yan, 2003. Friends or Enemies—A survey on invasive biology in China. Chinese National Geography 8: 84–99.

    Google Scholar 

  • Hakam, N. & J. P. Simon, 2000. Molecular forms and thermal and kinetic properties of purified glutathione reductase from two populations of barnyard grass (Echinochloa crus-galli (L.) Beauv.: Poaceae) from contrasting climatic regions in North America. Canadian Journal of Botany 78: 969–980.

    Article  CAS  Google Scholar 

  • Krieger, M. J. B. & K. G. Ross, 2002. Identification of a major gene regulating complex social behavior. Science 295: 328–332.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. E., 2002. Evolutionary genetics of invasive species. Trends in Ecology, Evolution 17: 386–391.

    Article  Google Scholar 

  • Lenssen, J. P. M., M. V. Kleunen, M. Fischer & H. Kroon, 2004. Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. Journal of Ecology 92: 696–706.

    Article  Google Scholar 

  • Lewis, H., 1973. The origin of diploid neo-species in Clarkia. American Naturalist 107: 161–170.

    Article  Google Scholar 

  • Li, J., S. Gao & Y. Li, 2006. Spatial and temporal variations in salt-marsh vegetation in Wanggang area, Jiangsu coast, based upon TM imagery analysis. Marine Sciences 30: 52–57.

    Google Scholar 

  • Liu, Y. X., M. C. Li & R. S. Zhang, 2004. Approach on the dynamic change and influence factors of Spartina alterniflora Loisel salt marsh along the coast of the Jiangsu Province. Wetland Science 2: 116–121.

    Google Scholar 

  • Luiting, V. T., J. R. Cordell & A.M. Olson, 1997. Does exotic Spartina alterniflora change benthic invertebrate assemblages? Proceedings of the Second International Spartina Conference. Washington State University, Olympia, 48–50.

  • McLellan, A. J., D. Pratei, O. Kaltz & B. Schmid, 1997. Structure and analysis of phenotypic and genetic variation in clonal plants. In de Kroon, H. & J. van Groenendael (eds), The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden: 185–210.

    Google Scholar 

  • Miller, M. P., 1998. AMOVA-PREP 1.01: A program for the Preparation of AMOVA Input Files from Dominant-markers Raw Data. Computer software distributed by author.

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proceeding of the National Academy of Science, USA. 70: 3321–3323.

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    PubMed  Google Scholar 

  • O’Brien, D. L. & D. W. Freshwater, 1999. Genetic diversity within tall form S. alterniflora Loisel. along the Atlantic and Gulf Coasts of the United States. Wetlands 19: 352–358.

    Article  Google Scholar 

  • Perkins, E. J., W. J. Streever, E. Davis & H. L. Fredrickson, 2002. Development of amplified fragment length polymorphism markers for Spartina alterniflora. Aquatic Botany 74: 85–95.

    Article  CAS  Google Scholar 

  • Proffitt, C. E., S. E. Travis & K. R. Edwards, 2003. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecological Applications 13: 180–192.

    Google Scholar 

  • Proffitt, C. E., R. L. Chiasson, A. B. Owens, K. R. Edwards & S. E. Travis, 2005. Spartina alterniflora genotype influences facilitation and suppression of high marsh species colonizing an early successional salt marsh. Journal of Ecology 93: 404–416.

    Article  Google Scholar 

  • Qian, Y. Q. & K. Ma, 1995. Bio-techniques and bio-safety. Journal of Natural Resources 4: 322–331.

    Google Scholar 

  • Qin, P., M. D. Jin & M. Xie, 1985. Community biomass among the three ecotypes of S. alterniflora in Luoyuan Bay, Fujian. Journal of Nanjing University Special issue, 226–236.

  • Richards, C. L., J. L. Hamrick, L. A. Donovan & R. Mauricio, 2004. Unexpectedly high clonal diversity of two salt marsh perennials across a severe environmental gradient. Ecology Letters 7: 1155–1162.

    Article  Google Scholar 

  • Richards, C. L., S. C. Pennings & L. A. Donovan, 2005. Habitat range and phenotypic variation in salt marsh plants. Plant Ecology 176: 263–273.

    Article  Google Scholar 

  • Rohlf, F. J., 1997. NTSYS-pc: numerical taxonomy and multivariate analysis system, ver. 2.02. Exeter Ltd, Setauket, NY, USA.

    Google Scholar 

  • Salmon, A., M. A. Ainouche & J. F. Wendel, 2005. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology 14: 1163–1175.

    Article  PubMed  CAS  Google Scholar 

  • Stiller, J. W. & A. L. Denton, 1995. One hundred years of Spartina alterniflora (Poaceae) in Willapa Bay, Washington: random amplified polymorphic DNA analysis of an invasive population. Molecular Ecology 4: 355–363.

    Google Scholar 

  • Travis, S. E., C. E. Proffitt, R. C. Lowenfeld & T. M. Mitchell, 2002. A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restoration Ecology 10: 37–42.

    Article  Google Scholar 

  • Travis, S. E., C. E. Proffitt & K. Ritland, 2004. Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecological Applications 14: 1189–1202.

    Google Scholar 

  • Travis, S. E. & M. W. Hester, 2005. A space-for time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology 93: 417–430.

    Article  Google Scholar 

  • Tsutsui, N. D., A. V. Suarez, D. A. Holway & T. J. Case, 2000. Reduced genetic variation and the success of an invasive species. Proceeding of the National Academy of Science, USA. 97: 5948–5953.

    Google Scholar 

  • Xu, C. Y., W. J. Zhang, C. Z. Fu & B. R. Lu, 2003. Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation 12: 637–645.

    Article  Google Scholar 

  • Xu, G. W. & R. Z. Zhuo, 1985. The primary research of Spartina alterniflora imported into China. Journal of Nanjing University Special Issue: 212–224.

  • Yeh, F. C., R. C. Yang, T. Boyle, Z. H. Ye & J. X. Mao, 1997. POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center. University of Alberta, Edmonton, Canada.

    Google Scholar 

  • Zhang, D. Y., 2004. Plant life history evolution and reproductive ecology. Science press, Beijing.

    Google Scholar 

  • Zhang, R. S., Y. M. Shen & L. Y. Lu, 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecological Engineering 23: 95–105.

    Article  CAS  Google Scholar 

  • Zhou, C. F., P. Qin & M. Xie, 2003. Vegetating coastal areas of east China: species selection, seedling cloning and transplantation. Ecological Engineering 20: 275–286.

    Article  Google Scholar 

  • Zhu, H. G., P. Qin & H. Wang, 2004. Functional group classification and target species selection for Yancheng Nature Reserve, China. Biodiversity and Conservation 13: 1335–1353.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Richard Mack, a professor at the Washington State University, for helpful comments on an earlier draft of this manuscript, and Dr. Mullen, Steven Francis, a professor at the University of Missouri-Columbia, and Dr. Peter, Mills in Department of Environmental Science, University of Northern Britain Columbia, Canada for correcting many grammatical mistakes. We are highly appreciative of the anonymous reviewers for providing constructive suggestions on earlier versions. The Natural Scientific Foundation of China (No. 30400054), National Key Projects for Basic Research (No. G2000046803), and the Fund for Young Distinguished Professors established by the Chinese Ministry of Education (2002002) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing An.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., An, S., Zhou, C. et al. Genetic structure and habitat selection of the tall form Spartina alterniflora Loisel. in China. Hydrobiologia 583, 195–204 (2007). https://doi.org/10.1007/s10750-006-0529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0529-x

Keywords

Navigation