Skip to main content

Advertisement

Log in

Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA

  • Eutrophication in Lakes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phosphorus (P) dynamics in large shallow lakes are greatly influenced by physical processes such as wind-driven sediment resuspension, at times scales from hours to years. Results from long-term (30 year) research on Lake Okeechobee, Florida (area 1,730 km2, mean depth 2.7 m) illustrate key features of these P dynamics. Variations in wind velocity result in changes in water column transparency, suspended solids, and total P (TP). In summer there are diurnal changes in TP associated with afternoon winds, and in winter, when strong winds occur for multiple days, monthly average TP remains high compared to summer. The magnitude of daily and seasonal TP changes can exceed 100 μg l−1. Hurricanes and tropical storms also cause extreme changes in TP that are superimposed on seasonal dynamics. When a hurricane passed 80 km south of the lake in October 1999, mean pelagic TP increased from 88 to 222 μg l−1. During large resuspension events, light attenuation is substantially increased, and this influences the biomass and spatial extent of submerged plants, as well as water column TP. In Lake Okeechobee, TP concentrations typically are ∼20 μg l−1 when submerged plants are dense, and soluble reactive P concentrations are reduced below detection, perhaps by the periphyton and plant uptake and by precipitation with calcium at high pH. In contrast, TP exceeds 50 μg l−1 when submerged plants and periphyton are absent due to prolonged deep water, and phytoplankton biomass and algal bloom frequency both are increased. In Lake Okeechobee and other large shallow lakes, complex models that explicitly consider wind-wave energy, hydrodynamics, and sediment resuspension, transport, and key biological processes are needed to accurately predict how lake water TP will respond to different management options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aldridge, F. J., E. J. Phlips & C. L. Schelske, 1995. The use of nutrient enrichment bioassays to test for spatial and temporal distribution of limiting factors affecting phytoplankton dynamics in Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 177–190.

    Google Scholar 

  • Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Hydrobiologia 74: 528–550.

    Google Scholar 

  • Aumen, N. G., 1995. The history of human impacts, lake management, and limnological research on Lake Okeechobee, Florida (USA). Archiv für Hydrobiologie, Advances in Limnology 45: 1–16.

    Google Scholar 

  • Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.

    Article  CAS  Google Scholar 

  • Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 2000. The potential for wave disturbance in shallow Florida lakes. Lake and Reservoir Management 16: 281–291.

    Google Scholar 

  • Bayley, S., V. Scotts, P. F. Springer & J. Stennis, 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975. Estuaries 1: 171–182.

    Article  Google Scholar 

  • Brezonik, P. L. & D. R. Engstrom, 1998. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. Journal of Paleolimnology 20: 31–46.

    Article  Google Scholar 

  • Burkholder, J. M., R. G. Wetzel & K. L. Klomparens, 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Applied and Environmental Microbiology 56: 2882–2890.

    PubMed  CAS  Google Scholar 

  • Canfield, D. E. Jr. & M. V. Hoyer, 1988. The eutrophication of Lake Okeechobee. Lake and Reservoir Management 4: 91–99.

    Google Scholar 

  • Cerco C. F. & T. Cole, 1994. User’s guide to the CE-QUAL-ICM three-dimensional eutrophication model. Technical Report EL-95–15, Waterways Experiment Station, US Army Corps of Engineers, Vicksburg, Mississippi, USA.

  • Caper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.

    Google Scholar 

  • Cichra, M. F., S. Badylak, N. Henderson, B. H. Reuter & E. J. Phlips, 1995. Phytoplankton community structure in the open water zone of a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie, Advances in Limnology 45: 157–175.

    Google Scholar 

  • Clugston, J. P., 1963. Lake Apopka, Florida, a changing lake and its vegetation. Florida Academy of Science 26: 168–174.

    Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and management of lakes and reservoirs. Lewis Publishers, Florida, USA.

    Google Scholar 

  • Dierberg, F. E., 1992. The littoral zone of Lake Okeechobee as a source of phosphorus after drawdown. Environmental Management 6: 371–380.

    Article  Google Scholar 

  • Douglas, R. W., B. Rippey & C. E. Gibson, 2002. Interpreting sediment trap data in relation to the dominant redistribution process in a lake. Archiv für Hydrobiologie 155: 529–539.

    Google Scholar 

  • Fisher, M. M., K. R. Reddy & R. T. James, 2001. Long-term changes in the sediment chemistry of a large shallow subtropical lake. Lake and Reservoir Management 17: 217–232.

    CAS  Google Scholar 

  • Flaig, E. J. & K. E. Havens, 1995. Historical trends in the Lake Okeechobee ecosystem I. Land use and nutrient loading. Archiv für Hydrobiologie, Supplement 107: 1–24.

    CAS  Google Scholar 

  • Hakanson, L., 1982. Lake bottom dynamics and morphometry: the dynamic ratio. Water Resources Research 18: 1444–1450.

    Article  Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients, and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.

    Article  Google Scholar 

  • Hanlon, C. G., R. L. Miller & B. F. McPherson, 1999. Relationships between wind velocity and underwater irradiance in a shallow lake (Lake Okeechobee, Florida, USA). Journal of the American Water Resources Association 34: 951–961.

    Google Scholar 

  • Hansson, L. A., 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biology 24: 265–273.

    Article  Google Scholar 

  • Harris, T. T., K. A. Williges & P. V. Zimba, 1995. Primary productivity and decomposition of five emergent macrophyte communities in the Lake Okeechobee marsh ecosystem. Archiv für Hydrobiologie, Advances in Limnology 45: 63–78.

    Google Scholar 

  • Havens, K. E., 1997. Water levels and total phosphorus in Lake Okeechobee. Lake and Reservoir Management 13: 16–25.

    CAS  Google Scholar 

  • Havens, K. E., 2002. Development and application of hydrologic restoration goals for a large subtropical lake. Lake and Reservoir Management 18: 285–292.

    Google Scholar 

  • Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.

    Article  Google Scholar 

  • Havens, K. E., N. G. Aumen, R. T. James & V. H. Smith, 1996. Rapid ecological changes in a large subtropical lake undergoing cultural eutrophication. AMBIO 25: 150–155.

    Google Scholar 

  • Havens, K. E., H. J. Carrick, E. F. Lowe & M. F. Coveney, 1999. Contrasting relationships between nutrients, chlorophyll a, and Secchi transparency in two shallow subtropical lakes: Lakes Okeechobee and Apopka (Florida, USA). Lake and Reservoir Management 15: 298–309.

    CAS  Google Scholar 

  • Havens, K. E., T. Fukushima, P. Xie, T. Iwakuma, R. T. James, N. Takamura, T. Hanazato & T. Yamamoto, 2001b. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (P.R. China), and Okeechobee (USA). Environmental Pollution 111: 263–272.

    Article  CAS  Google Scholar 

  • Havens, K. E., R. T. James, T. L. East & V. H. Smith, 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Havens, K. E., M. C. Harewll, M. A. Brady, B. Sharfstein, T. L. East, A. J. Rodusky, D. Anson & R. P. Maki, 2002. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake. The Scientific World Journal 2: 949–965.

    Google Scholar 

  • Havens, K. E., K-R. Jin, A. J. Rodusky, B. Sharfstein, M. A. Brady, T. L. East, N. Iricanin, R. T. James, M. C. Harwell & A. D. Steinman, 2001a. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. The Scientific World Journal 1: 44–70.

    CAS  Google Scholar 

  • Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.

    Article  Google Scholar 

  • Havens, K. E. & C. L. Schelske, 2001. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs. Environmental Pollution 113: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.

    Article  Google Scholar 

  • Havens, K. E. & A. D. Steinman, 1995. Aquatic systems. In Rechcigl, J. E. (ed.), Soil Amendments—Impacts on Biotic Systems. Lewis Publishers, Florida, USA.

    Google Scholar 

  • Havens, K. E. & W. W. Walker Jr., 2002. Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake and Reservoir Management 18: 227–238.

    CAS  Google Scholar 

  • Herdendorf, C. E., 1984. Inventory of the morphometric and limnological characteristics of the large lakes of the world. Tech. Bull. Ohio Sea Grant, Columbus, Ohio, USA.

  • Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography 30: 1131–1143.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology, volume 1, part 2—Chemistry of Lakes. John Wiley and Sons, New York, USA.

  • Hwang, S.-J., K. E. Havens & A. D. Steinman, 1998. Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater Biology 40: 729–745.

    Article  CAS  Google Scholar 

  • Ishikawa, T. & M. Tanaka, 1993. Diurnal stratification and its effects on wind-induced currents and water qualities in Lake Kasumigaura, Japan. Journal of Hydraulic Research 31: 307–322.

    Article  Google Scholar 

  • James, R. T., B. L. Jones & V. H. Smith, 1995a. Historical trends in the Lake Okeechobee ecosystem II. Nutrient budgets. Archiv für Hydrobiologie, Supplement 107: 25–47.

    CAS  Google Scholar 

  • James, R. T., J. Martin, T. Wool & P. F. Wang, 1997. A sediment resuspension and water quality model of Lake Okeechobee. Journal of the American Water Resources Association 33: 661–680.

    CAS  Google Scholar 

  • James, R. T., V. H. Smith & B. L. Jones, 1995b. Historical trends in the Lake Okeechobee ecosystem III. Water quality. Archiv für Hydrobiologie, Supplement 107: 49–69.

    CAS  Google Scholar 

  • Jin, K.-R. & Z.-G. Ji, 2001. Calibration and verification of a spectral wind-wave model for Lake Okeechobee. Ocean Engineering 28: 571–584.

    Article  Google Scholar 

  • Jin, K.-R., Z.-G. Ji & J. H. Hamrick, 2002. Modeling winter circulation in Lake Okeechobee, Florida. Journal of Waterway, Port, Coastal and Ocean Engineering 27: 114–125.

    Article  Google Scholar 

  • Jin, K.-R., J. H. Hamrick & T. Tisdale, 2000. Application of three-dimensional hydrodynamic model for Lake Okeechobee. Journal of Hydraulic Engineering 126: 758–771.

    Article  Google Scholar 

  • Kristensen, P., M. Sondergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.

    Article  CAS  Google Scholar 

  • Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72: 249–260.

    Article  Google Scholar 

  • Landsea, C., 2001. Testimony before the Committee on Science, Environment, Technology, and Standards Sub-Committee. United States House of Representatives, Washington, DC.

  • Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science 179: 678–680.

    Article  CAS  Google Scholar 

  • Lean, D. R. S., 1973b. Movements of phosphorus between its biologically important forms in lake water. Journal of the Fisheries Research Board of Canada 30: 1525–1536.

    CAS  Google Scholar 

  • Luettich, R. A. Jr., D. R. F. Harleman & L. Somlyudy, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.

    Google Scholar 

  • Maceina, M. J., 1993. Summer fluctuations in planktonic chlorophyll a concentrations in Lake Okeechobee, Florida: the influence of lake levels. Lake and Reservoir Management 8: 1–11.

    Google Scholar 

  • Maceina, M. J. & D. M. Soballe, 1990. Wind-related limnological variation in Lake Okeechobee. Lake and Reservoir Management 6: 93–100.

    Article  Google Scholar 

  • Mazumder, A. & K. E. Havens, 1998. Nutrient-chlorophyll relationships in temperate vs. subtropical lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 1652–1662.

    Article  CAS  Google Scholar 

  • Moore, P. A. Jr. & K. R. Reddy, 1994. Role of Eh and pH on phosphorus biogeochemistry in sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23: 955–964.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes (parts I and II). Journal of Ecology 29: 280–329.

    Article  CAS  Google Scholar 

  • Murphy, T., K. Hall & I. Yesaki, 1983. Co-precipitation of phosphate and calcite in a naturally eutrophic lake. Limnology and Oceanography 28: 58–67.

    Article  CAS  Google Scholar 

  • Otsubo, K. & K. Muraoka, 1987. Field studies on physical properties of sediment and sediment resuspension in Lake Kasumigaura. Japanese Journal of Limnology 48: 131–138.

    Google Scholar 

  • Peters, R. H. & A. Cattaneo, 1984. The effects of turbulence on phosphorus supply in a shallow bay of Lake Memphremagog. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 185–189.

    CAS  Google Scholar 

  • Phlips, E. J., M. Cichra, K. E. Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall & P. Hansen, 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. Journal of Plankton Research 19: 319–342.

    Article  Google Scholar 

  • Phlips, E. J., F. J. Aldridge & P. Hansen, 1995. Patterns of water chemistry, physical and biological parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie, Advances in Limnology 45: 117–135.

    CAS  Google Scholar 

  • Phlips, E. J., P. V. Zimba, M. S. Hopson & T. L. Crisman, 1993. Dynamics of the plankton community in submerged plant dominated regions of Lake Okeechobee, Florida, USA. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 423–426.

    Google Scholar 

  • Qin, B., G. Zhu, L. Zhang, L. Luo, G. Gao, W. Sumin & B. Gu, 2006. Models and estimation methods of nutrient release from sediments of large shallow lakes: a case study of Lake Taihu. Science in China (in press).

  • Reddy, K. R., 1993. Lake Okeechobee Phosphorus Dynamics Study. volume III–biogeochemical processes in the sediments. Technical Report to the South Florida Water Management District, West Palm Beach, Florida, USA.

  • Reddy, K. R., Y. P. Sheng & B. L. Jones, 1995. Lake Okeechobee Phosphorus Dynamics Study. volume I—summary. Technical Report to the South Florida Water Management District, West Palm Beach, Florida, USA.

  • Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 675–683.

    Article  Google Scholar 

  • Rigler, F. H., 1964. The phosphorus fractions and the turnover time of inorganic phosphorus in the epilimnion of lakes. Canadian Fish Culturist 32: 3–9.

    Google Scholar 

  • Rigler, G. H., 1973. A dynamic view of the phosphorus cycle in lakes. In Griffith, E. J., A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Reynolds, C. S., 1994. The Ecology of Freshwater Phytoplankton. Cambridge Univiversity Press.

  • Sas, H., 1989. Lake restoration by reduction of nutrient loadings: expectations, experiences, extrapolations. Academia Verlag Richarz, Germany.

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, New York, USA.

    Google Scholar 

  • Sheng, Y. P., 1993. Hydrodynamics, sediment transport and their effects on phosphorus dynamics in Lake Okeechobee. In Mehta, A. J. (ed.), Coastal and Estuarine Studies 42: Near-shore and Estuarine Cohesive Sediment Transport. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Sheng, Y. P., 1999. Effects of hydrodynamic processes on phosphorus distribution in aquatic ecosystems. In Reddy, K. R., G. A. O’Conner & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers, Florida, USA.

    Google Scholar 

  • Sondergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World Journal 1: 427–442.

    CAS  Google Scholar 

  • Sondergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.

    Article  Google Scholar 

  • Steinman, A. D., K. E. Havens, N. G. Aumen, R. T. James, K-R. Jin, J. Zhang & B. H. Rosen, 1999. Phosphorus in Lake Okeechobee: sources, sinks, and strategies. In Reddy, K. R., G. A. O’Conner & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers, Florida, USA.

    Google Scholar 

  • Steinman, A. D., K. E. Havens, H. J. Carrick & R. VanZee, 2002a. The past, present, and future hydrology and ecology of Lake Okeechobee ant its watersheds. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coastal Reefs of the Florida Keys, an Ecosystem Restoration Sourcebook. CRC Press, Florida, USA.

    Google Scholar 

  • Steinman, A. D., K. E. Havens, A. J. Rodusky, B. Sharfstein, R. T. James & M. C. Harwell, 2002b. The influence of environmental variables and a managed water recession on the growth of charophytes in a large, subtropical lake. Aquatic Botany 72: 297–313.

    Article  Google Scholar 

  • Van Liere, L. & R. D. Gulati, 1992. Restoration and Recovery of Shallow Eutrophic Lake Ecosystems in the Netherlands. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Van Rees, K. C. J., K. R. R. Reddy & P. S. C. Rao, 1996. Influence of benthic organisms on solute transport in lake sediments. Hydrobiologia 317: 31–40.

    Article  Google Scholar 

  • Vermaat, J. E., L. Santamaria & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch. Hydrobiologia 148: 549–562.

    CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology—Lake and River Ecosystems, 3rd edn. Academic Press, New York, USA.

    Google Scholar 

  • Yassuda, E. A. & Y. P. Sheng, 1997. Integrated modeling of Tampa Bay estuarine system. Technical Report, Coastal and Ocean Engineering Department, University of Florida, Gainesville, Florida, USA.

  • Zimba, P. V., M. S. Hopson, J. P. Smith, D. E. Colle & J. V. Shireman, 1995. Chemical composition and distribution of submersed aquatic vegetation in Lake Okeechobee, Florida (1989–1991). Archiv für Hydrobiologie, Advances in Limnology 45: 241–246.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Peter Doering, Susan Gray, Garth Redfield, and two anonymous reviewers for providing comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Havens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havens, K.E., Jin, KR., Iricanin, N. et al. Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA. Hydrobiologia 581, 25–42 (2007). https://doi.org/10.1007/s10750-006-0502-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0502-8

Keywords

Navigation