Skip to main content

Advertisement

Log in

Vegetation and soil properties in restored wetlands near Lake Taihu, China

  • Eutrophication in Lakes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Riparian wetlands are important components of the lake ecosystem, and they play essential roles in maintaining system health. Remediation of degraded lakeshore wetlands is an essential component of lake restoration. A study was conducted to investigate the restoration of lakeshore wetlands, which were converted to rice fields and then abandoned for 2, 5, 10 and 15 years, near Lake Taihu. Soil samples (0–20 cm and 20–40 cm) were taken and plant species were investigated. The carbon content in the soil had increased significantly, rising from 0.71% to 1.85% between 2 and 15 years. Organic matter accumulation improved soil texture, and water stable aggregate content (>0.25 mm) and soil porosity increased. Total nitrogen in the soil increased from 0.06% to 0.13%, and total Kjeldahl nitrogen increased from 124.4 mg kg−1 to 351.5 mg kg−1. Total phosphorus in the soil increased from 0.045% to 0.071%, and the Olsen-P value increased from 5.13 mg kg−1 to 16.0 mg kg−1. Results showed that phosphorous did not increase as much as nitrogen. In the vegetation restoration process, plant species composition moved towards a natural wetland community, and spatial heterogeneity and landscape diversity increased. The richness of plant biodiversity increased rapidly in the first 2 years, then more slowly in later restoration stages. The wetlands recovery process may be complicated by interactions of biota and soil and hydrological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrew, E. C. & H. Baldwin, 2002. Responses of wetland plants to ammonia and water level. Ecological Engineering 18: 257–264.

    Article  Google Scholar 

  • Aronson, J., C. Floret, E. Le Floc’h, C. Ovalle & R. Pontanier, 1993. Restoration and rehabilitation of degraded ecosystems in arid and semiarid lands. I. A view from the south. Restoration Ecology 1: 8–17.

    Article  Google Scholar 

  • Browman, R. A., J. D. Reeder & R. W. Lober, 1990. Changes in soil properties in Central Plain rangeland soil after 3, 20, and 60 years of cultivation. Soil Science 150: 851–857.

    Article  Google Scholar 

  • Bruland, G. L. & C. J. Richardson, 2004. A spatially explicit investigation of phosphorus sorption and related soil properties in two riparian wetlands. Journal of Environmental Quality 33: 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Bruland, G. L. & C. J. Richardson, 2005. Spatial variability of soil properties in created, restored, and paired natural wetlands. Soil Science Society of America Journal 69: 273–284.

    CAS  Google Scholar 

  • Castelli, R. M., J. C. Chambers & R. J. Tausch, 2000. Soil–water relations along a soil-water gradient in Great Basin riparian meadows. Wetlands 20: 251–266.

    Article  Google Scholar 

  • Chen, H. S., 2001. Restoration project of the ecosystem in Lake Taihu. Resources and Environment in the Changjiang River Basin 10(2): 173–178 (in Chinese).

    Google Scholar 

  • Chen, J. Y. & S. L. Chen, 2002. Challenges to estuary and shoreline in China. Marine Geology 18(1): 1–5 (in Chinese).

    Google Scholar 

  • Comin, F. A., J. A. Romero, H. Oliver & M. Menéndez, 2001. Restoration of wetlands from abandoned paddy fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9(2): 201–208.

    Article  Google Scholar 

  • Coveney, M. F., D. L. Stites & E. F. Lowe, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159.

    Article  Google Scholar 

  • Cooper, J. R., J. W. Gilliam & R. B. Daniels, 1987. Riparian areas as filters for agricultural sediment. Soil Science Society of American Journal 51(2): 416–420.

    Article  Google Scholar 

  • Craft, C., 2000. Co-development of wetland soil and benthic invertabrate communities following salt marsh creation. Wetland Ecology and Management 8(2): 197–207.

    Article  CAS  Google Scholar 

  • Grantz, D. A., D. L. Vaughn, R. J. Farber, B. Kim, L. Ashbaugh, T. VanCuren, R. Campbell, D. Bainbridge & T. Zink, 1998. Transplanting native plants to revegetate abandoned farmlands in the western Mojave Desert. Journal of Environmental Quality 27: 960–967.

    Article  CAS  Google Scholar 

  • Hu, Y. & L. G. Jiang, 2004. Returning farmland to lake-restoration of the kidney of Yangtse River. Chinese National Geography 11: 138–146.

    Google Scholar 

  • Jin, X. S., H. Liu & Q. Y. Tu, 1990. Lake eutrophication in China. Environmental Sciences Press of China (in Chinese).

  • Kosmas, C., S. T. Gerontidis & M. Marathianou, 2000. The effect of land use change on soil and vegetation over various lithological formations on Lesvos (Greece). Catena 40: 51–68.

    Article  CAS  Google Scholar 

  • Lee, C. S., Y. H. You & G. R. Robinson, 2002. Secondary succession and natural habit restoration in abandoned fields of central Korea. Restoration Ecology 10: 306–314.

    Article  Google Scholar 

  • Li, Y. Q., 2003. Vegetation dynamics and soil characteristics during grassland succession process in abandoned land. MS degree dissertation thesis, Inner Mongolia Agricultural University, 36 pp.

  • Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review Ecological Systematics 28: 621–658.

    Article  Google Scholar 

  • Naiman, R. J., H. Décamps & F. Fournier (eds), 1994. The role of land/inland water ecotones in landscape management and restoration: a proposal for collaborative research. MAB digest 4, UNESCO.

  • National Bureau of Statistics of China, 2001. Development Report of China in 2001: the ninth five-year plan. Chinese Statistics Press, Beijing, 352 pp (in Chinese).

  • Peng, S. L., 1995. The restoration and rehabilitation of the degraded ecosystems in the southern part of subtropical China. In Chen, L. Z. & W. L. Chen (eds), Studies on Degraded Ecosystems in China. China’s Science and Technology Publishing House, Beijing, 94–113.

    Google Scholar 

  • Singh, K. P., T. N. Mandal & S. K. Tripathi, 2001. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the hilly forest ecosystem of Nepal Himalaya. Ecological Engineering 17: 385–401.

    Article  Google Scholar 

  • Soil Science Society of America and American Society of Agronomy, 1996. Methods of Soil Analysis: Chemical Methods. SSSA Incorporation and ASA Incorporation, Madison, NJ, USA.

    Google Scholar 

  • Song, Y. C., 2001. The Species Composition of Vegetation Communities. Vegetation Ecology. East China Normal University Press, 62–89.

  • Tabacchi, E., D. L. Correll, R. Hauer, G. Pinay, A.-M. Planty-Tabacchi & R. C. Wissmar, 1998. Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology 40: 497–516.

    Article  Google Scholar 

  • Vollenweider, R. A., 1992. Coastal marine eutrophication: principles and control. In Vollenweider, R. A., R. Marchetti & R. Viviani (eds), Marine Coastal Eutrophication, Elsevier Science Publications, 1–20.

  • Xiong, Z. P., 2004. The analysis for the causes of floods in China and the counter measures for reducing the damage. China Water Resources, 16 pp.

  • Yin, C. Q. & Z. W. Lan, 1995. The nutrient retention by ecotone wetlands and their modification for Baiyangdian Lake restoration. Water Science and Technology 32(3): 159–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Chinese Academy of Sciences (No. KZCX1-SW-12) and the National Hi-Tech Research Program (No. 2002AA601011-05). We gratefully thank Yaohui Hu, Zexiang Lei, Nian’gen Du and Hongmei Hao for their assistance with sampling and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqing Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Wang, H., Wang, W. et al. Vegetation and soil properties in restored wetlands near Lake Taihu, China. Hydrobiologia 581, 151–159 (2007). https://doi.org/10.1007/s10750-006-0495-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0495-3

Keywords

Navigation