Skip to main content
Log in

Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The amount of oxygen released from the roots of Phragmites australis was quantified to examine the effects of airflow through dead culms, radiation, and temperature on radial oxygen loss (ROL). To investigate the effect of dead culms on ROL quantitatively, the ROL of individual plants with open dead culms was compared to that of plants with sealed dead culms as a function of light intensity and temperature. The relationship between ROL and plant morphology (aboveground biomass, shoot diameter, shoot height) was investigated. When exposed to 300, 600, and 900 μmol m−2 s−1 light, the ROL was 15.6, 22.5, and 30.9 μmol O2 g−1 dry root day−1, respectively, from plants with open dead culms and 11.0, 16.4, and 23.3 μmol O2 g−1 dry root day−1, respectively, from plants with sealed dead culms. The ROL from plants with open dead culms was obviously higher than that from plants with sealed dead culms in every condition. The ROL from plants with open culms was 37% and 30% higher than that from plants with sealed culms at 20°C and 30°C, respectively. The effects of plant-specific parameters such as leaf area and shoot diameter on radial oxygen loss were evident. From the point of view of rhizosphere oxidation during the growing season, the existence of open dead culms should be taken into consideration for optimal plant management in constructed wetlands. This study provides a theoretical understanding of the effects of open dead culms, light conditions, and temperature on radial oxygen loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong, W., 1978. Root aeration in the wetland condition. In Hook, D. D. & R. M. M. Crawford (eds), Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc., Ann Arbor, MI, 269–298.

    Google Scholar 

  • Armstrong, W., 1979. Aeration in higher plants. Advance Botany Research 7: 225–331.

    Article  CAS  Google Scholar 

  • Armstrong, J. & W. Armstrong, 1988. Phragmites australis: a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytologist 108: 372–382.

    Article  Google Scholar 

  • Armstrong, J. & W. Armstrong, 1990. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytologist 114: 121–128.

    Article  Google Scholar 

  • Armstrong, W., J. Armstrong & P. M. Beckett, 1990. Measurement and modelling of oxygen release from roots of Phragmites australis. In: Cooper, P. F. & B. C. Findlater (eds), Constructed wetlands in water pollution control. Pergamon Press, Oxford, UK, 41–52.

    Google Scholar 

  • Armstrong, J., W. Armstrong & P. M. Beckett, 1992. Phragmites australis: venturi and humidity-induced pressure-flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist 120: 197–207.

    Article  Google Scholar 

  • Armstrong, J., W. Armstrong, I. B. Armstrong & G. R. Pittaway, 1996. Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquatic Botany 54: 211–226.

    Article  CAS  Google Scholar 

  • Bodelier, P. L. E., 2003. Interactions between oxygen-releasing roots and microbial processes in flooded soils and sediments. In de Kroon, H., E. J. W. Visser (eds), Root ecology. Ecological Studies, Springer, Berlin, 168: 331–362.

  • Brix, H., 1990. Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Research 24: 259–266.

    Article  CAS  Google Scholar 

  • Brix, H., 1993. Macrophyte-mediated oxygen transfer in wetlands: Transport mechanisms and rates. In Moshiri G. A. (ed), Constructed wetlands for water quality improvement. CRC Press, Boca Raton, FL, 391–397.

    Google Scholar 

  • Brix, H., & H.-H. Schierup, 1990. Soil oxygenation in constructed reed beds: The role of macrophyte and soil-atmosphere interface oxygen transport. In Cooper, P. F. & B. C. Findlater (eds), Constructed wetlands in water pollution control. Pergamon Press, Oxford, UK, 53–66.

    Google Scholar 

  • Brix, H., B. K. Sorrell & B. Lorenzen, 2001. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69: 313–324.

    Article  CAS  Google Scholar 

  • Brix, H., B. K. Sorrell & P. T. Orr, 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology and Oceanography 37: 1420–1433.

    Article  Google Scholar 

  • Brix, H., B. K. Sorrell & H.-H. Schierup, 1996. Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat. Bot. 54: 151–163.

    Article  Google Scholar 

  • Burian, K., 1973. Phragmites communis Trin im Röhricht des Neusiedlersees. Wachstum, Produktion und Wasserverbrauch. In Ellenberg H. (ed), Ökosystemforschung. Springer Verlag, Heidelberg, 61–78.

    Google Scholar 

  • Canale, R. P. & M. T. Auer, 1982. Ecological studies and mathematical modeling of Cladophora in Lake Huron: VII. Model verification and system response. Journal of Great Lakes Research 8: 134–143.

    CAS  Google Scholar 

  • Conlin, T. S. S. & A. A. Crowder, 1988. Location of radial oxygen loss zones of potential iron uptake in a grass and two non-grass emergent species. Canadian Journal of Botany 67: 717–722.

    Google Scholar 

  • Gloser, J., 1977. Characteristics of CO2 exchange in Phragmites communis Trin. derived from measurements in situ. Photosynthetica 11: 139–147.

    CAS  Google Scholar 

  • Gries, C., L. Kappen & R. Losch, 1990. Mechanism of flood tolerance in reed, Phragmites australis (Cav.) Trin. ex. Steudel. New Phytologist 114: 589–593.

    Article  Google Scholar 

  • Hansen, J. I. & F. O. Andersen, 1981. Effects of Phragmites australis roots on redox potentials, nitrification and bacterial numbers in sediments. In Bromberg, A. & T. Tiren (eds), Ninth Nordic Symposium on Sediments: 72–78.

  • Hawke, C. J. & P. V. José, 1996. Reedbed Management for Commercial and Wildlife Interests. The Royal Society for the Protection of Birds, Sandy.

  • Iizumi, H. & A. Hattori, 1980. Nitrate and nitrite in interstitial waters of eelgrass beds in relation to the rhizosphere. Journal of Experimental Marine Biology and Ecology 47: 191–201.

    Article  CAS  Google Scholar 

  • Jespersen, D. N., B. K. Sorrell & H. Brix, 1998. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany 61: 165–180.

    Article  CAS  Google Scholar 

  • Karunaratne, S., T. Asaeda & K. Yutani, 2004. Shoot regrowth and age-specific rhizome storage dynamics of Phragmites australis subjected to summer harvesting. Ecological Engineering 22: 99–111.

    Article  Google Scholar 

  • Kim, J. D., A. Jugsujinda, A. A. Carbonell-Barrachina, R. D. Delaune & W. H. Patrick Jr., 1999. Physiological functions and methane and oxygen exchange in Korean rice cultivars grown under controlled soil redox potential. Botanical Bulletin Academia Sinica. 40: 185–191.

    CAS  Google Scholar 

  • Kludze, H. K., R. D. Delaune & W. H. Patrick Jr., 1993. Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of American Journal 57: 386–391.

    Article  CAS  Google Scholar 

  • Kludze, H. K. & R. D. Delaune, 1994. Methane emissions and growth of Spartina patens in response to soil redox intensity. Soil Science Society of American Journal 58: 1838–1845.

    Article  CAS  Google Scholar 

  • Lawson, G. J., 1985. Cultivating reeds (Phragmites australis) for the root zone treatment of sewage. Contract Report ITE Project 965. Water Research Center, Cumbria, UK, 1–64.

  • Sorrell, B. K., 1999. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell and Environment 22: 1587–1593.

    Article  CAS  Google Scholar 

  • Sorrell, B. K. & H. Brix, 2003. Effects of water vapour pressure deficit and stomatal conductance on photosynthesis, internal pressurization and convective flow in three emergent wetland plants. Plant and Soil 253: 71–79.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., H. Brix & P. I. Boon, 1994. Modelling of in situ oxygen transport and aerobic metabolism in the hydrophyte Eleocharis sphacelata R Br. Proceedings of the Royal Society of Edinburgh Section B 102: 367–372.

    Google Scholar 

  • Sorrell, B. K., H. Brix & P. T. Orr, 1993. Oxygen exchange by entire root systems of Cyperus involucratus and Eleocharis sphacelata. Journal of Aquatic Plant Management 31: 24–28.

    Google Scholar 

  • Wießner, A., P. Kuschk, M. Kästner & U. Stottmeister, 2002a. Abilities of helophyte species to release oxygen into rhizospheres with varying redox conditions in laboratory-scale hydroponic systems. International Journal of Phytoremediation 4: 1–15.

    Article  Google Scholar 

  • Wießner, A., P. Kuschk & U. Stottmeister, 2002b. Oxygen release by roots of Typha latifolia and Juncus effuses in laboratory hydroponic systems. Acta Biotechnologia 22: 209–216.

    Article  Google Scholar 

  • Zehnder, A. J. B. & K. Wuhrmann, 1976. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science (Washington, DC) 194: 1165–1166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Tanaka.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Yutani, K., Aye, T. et al. Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature. Hydrobiologia 583, 165–172 (2007). https://doi.org/10.1007/s10750-006-0483-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0483-7

Keywords

Navigation