Skip to main content
Log in

Non-monophyly of fish in the Sinipercidae (Perciformes) as inferred from cytochrome b gene

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The sinipercids represent a group of 12 species of freshwater percoid fish, including nine in Siniperca and three species in Coreoperca. Despite several classification attempts and a preliminary molecular phylogeny, the phylogenetic relationships and systematic position of sinipercids remained still unsolved. The complete cytochrome b gene sequences from nine sinipercid species four non-sinipercid fish species were cloned, and a total of 12 cyt b sequences from 10 species of sinipercids and 11 cyt b sequences from 10 species of non-sinipercid fish also in Perciformes were included in the phylogenetic analysis. As expected, the two genera Siniperca and Coreoperca within sinipercids are recovered as monophyletic. However, nine species representing Moronidae, Serranidae, Centropomidae, Acropomatidae, Emmelichtyidae, Siganidae and Centrarchidae included in the present study are all nested between Coreoperca and Siniperca, which provides marked evidence for a non-monophyly of sinipercid fishes. Coreoperca appears to be closest to Centrachus representing the family Centrarchidae. Coreoperca whiteheadi and C. herzi are sibling species, which together are closely related to C. kawamebari. In the Siniperca, the node between S. roulei and the remaining species is the most ancestral, followed by that of S. fortis. S. chuatsi and S. kneri are sibling species, sister to S. obscura. However, the sinipercids do not seem to have a very clear phylogenetic history, for different methods of phylogenetic reconstruction result in different tree topologies, and the only conclusive result in favor of a paraphyletic origin of the two sinipercid genera is the parametric bootstrap test. The paraphyly of Sinipercidae may suggest that the “synapomorphs” such as cycloid scales, upon which this family is based, were independently derived at least twice within sinipercid fishes, and further study should be carried out to include the other two Siniperca species and to incorporate other genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Cao, Y., K. Kim, J. Ha & M. Hasegawa, 1999. Model dependence of the phylogenetic inference: relationship among carnivores, perissodactyls and cetartiodactyls as inferred from mitochondrial genome sequences. Genes & Genetic Systems 74: 211–213.

    Article  CAS  Google Scholar 

  • Cavender, T. M., 1986. Review of the fossil history of North American freshwater fishes. In Hocutt C. H. & E. O. Wiley (eds), The Zoogeography of North American freshwater fishes. Wiley, New York: 699–724.

    Google Scholar 

  • Doi, T., S. Aoyama & I. Kinoshita, 2004. Ontogeny of the mandarinfish Siniperca chuatsi (Perciformes: Sinipercidae) reared in aquarium. Ichthyological Research 51: 337–342.

    Article  Google Scholar 

  • Engstrom, T. N., H. B. Shaffer & W. Mccord, 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae) Systematic Biology 53: 693–710.

    Article  PubMed  Google Scholar 

  • Esposti, M. D., S. De Vries, M. Crimi, A. Ghelli, T. Patarnello & A. Meyer, 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochimica et Biophysica Acta 1143: 243–271.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, N., J. P. Anderson & A. G. Rodrjgo, 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology 49: 652–670.

    Article  PubMed  CAS  Google Scholar 

  • Gosline, W. A., 1966. The limits of the fish family Serranidae, with notes on other lower percoids. Proceedings of the California Academy of Sciences 33: 91–112.

    Google Scholar 

  • Griffiths, C. S., 1997. Correlation of functional domains and rates of nucleotide substitution in cytochrome b. Molecular Phylogenetics and Evolution 7: 352–365.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X. & W. H. Li, 1998. Estimation of evolutionary distances under stationary and nonstationary models of nucleotide substitution. Proceedings of the National Academy of Sciences of the United States of America 95: 5899–5905.

    Article  PubMed  CAS  Google Scholar 

  • Guo, X., S. He & Y. Zhang, 2005. Phylogeny and biogeography of Chinese sisorid catifhes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Molecular Phylogenetics and Evolution 35: 344–362.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M., 1996. Inferring complex phylogenies. Nature 383: 130–131.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M., 1998. Taxonomic sampling, phylogenetic accuracy, and investigation bias. Systematic Biology 47: 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M. & J. P. Huelsenbeck, 1992. Signal, noise, and reliability in molecular phylogenetic analyses. The Journal of Heredity 83: 189–195.

    PubMed  CAS  Google Scholar 

  • Hillis, D. M. & T. P. Wiocox, 2005. Phylogeny of the New World true frogs (Rana). Molecular Phylogenetics and Evolution 34: 299–314.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., D. M. Hillis & R. Nielsen, 1996. A likelihood-ratio test of monophyly. Systematic Biology 45: 546–558.

    Article  Google Scholar 

  • Johnson, G. D., 1984. Percoidei: development and relationships. In Moser, H. G., W. J., Richards, D. M., Cohen & M. P., Fahay (eds), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists, Special Publication 1: 464–498.

  • Katayama, M., 1960. Fauna Japonica: Serranidae (Pisces). Biogeographical Society of Japan, Tokyo.

    Google Scholar 

  • Liu, C. H., 1985. The interesting marine fishes of Taiwan. Taiwan provincial department of education, Taiwan, R.O.C.

    Google Scholar 

  • Liu, H. & Y. Chen, 1994. Phylogeny of the sinipercine fishes with some taxonomic notes. Zoological Research 15 (Suppl.): 1–12.

    Google Scholar 

  • Liu, H., 1997. Study on systematic position of sinipercine fishes with discussion on relationships of some lower perciforms. Transaction of the Chinese Ichthyological Society 6: 1–7.

    CAS  Google Scholar 

  • Maddison, W. P., D. R. Maddison, 2005. Mesquite: a modular system for evolutionary analysis. Version 1.06. http://mesquiteproject.org.

  • Miya, M., H. Takeshima, H. Endo, N. G. Ishiguro, J. Inoue, T. Mukai, T. P. Satoh, M. Yamaguchi, A. Kawaguchi, K. Mabuchi, S. M. Shirai & M. Nishida, 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26: 121–138.

    Article  PubMed  CAS  Google Scholar 

  • Near, T. J., J. C. Porterfield & L. M. Page, 2000. Evolution of cytochrome b and the molecular systematics of Ammocrypta (Percidae: Etheostomatinae). Copeia 2000: 701–711.

    Article  Google Scholar 

  • Nelson, J. S., 1994. Fishes of the World. 3rd edn. John Wiley, Sons, Inc, New York.

    Google Scholar 

  • Orrell, T. M., K. E. Carpenter, J. A. Musick & J. E. Graves, 2002. Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome b Sequences. Copeia 3: 618–631.

    Article  Google Scholar 

  • Perdices, A., C. Cunha & M. M. Coelho, 2004. Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences. Molecular Phylogenetics and Evolution 31: 192–203.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, D. D., D. J. Zwickl, J. A. Mcguire & D. M. Hillis, 2002. Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology 51: 664–671.

    Article  PubMed  Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D. & T. R. Buckley, 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approach. Systematic Biology 53: 793–808.

    Article  PubMed  Google Scholar 

  • Roberts, C. D., 1993. Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of Marine Science 52: 60–113.

    Google Scholar 

  • Roe, K. J., P. M. Harris & R. L. Mayden, 2002. Phylogenetic relationships of the genera of North American sunfishes and basses (Percoidei: Centrarchidae) as evidenced by the mitochondrial cytochrome b gene. Copeia 4: 897–905.

    Article  Google Scholar 

  • Ruedi, M., M. Auberson & V. Savolainen, 1998. Biogeography of sulawesian shrews: testing for their origin with parametric bootstrap on moleuclar data. Molecular Phylogenetics and Evolution 9: 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.

    CAS  Google Scholar 

  • Shimodaira, H. & M. Hasegawa, 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492–508.

    Article  PubMed  Google Scholar 

  • Shirai, S. M., Y. Yabumoto, I. Kim & C. Zhang, 2003. Phylogeny of sinipercid fishes and their relatives inferred from mtDNA cytochrome b gene: a preliminary study. Bulletin of Kitakyushu Museum of National History and Human History Series A 1: 45–49.

    Google Scholar 

  • Strimmer, K. & A. Rambaut, 2002. Inferring confidence sets of possibly misspecified gene trees. Phylosophical Transactions of the Royal Society B: Biological Science 269: 137–142.

    Article  Google Scholar 

  • Swofford, D. L., G. J. Olsen, P. J. Waddell & D. M. Hillis, 1996. Phylogenetic inference. In Hillis D. M., C. Mortiz & B. K. Mable (eds), Molecular Systematics, 2nd edn. Sinauer, Associates, Sunderland, Massachusetts: 407–514.

    Google Scholar 

  • Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer, Sunderland, MA.

  • Templeton, A. R., 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244.

    Article  CAS  Google Scholar 

  • Thompson, J. D, T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, G. K & S. V. Edwards, 1998. Can weighting improve bushy trees? Models of cytochrome b evolution and the molecular systematics of pipits and wagtails (Aves: Motacillidae). Systematic Biology 47: 589– 603.

    Article  PubMed  CAS  Google Scholar 

  • Waldman, J. R., 1986. Systematics of Morone (Pisces: Moronidae), with notes on the lower percoids. Ph. D. thesis, Department of Biology, The City University of New York, New York.

  • Xiao, W., Y. Zhang & H. Liu, 2001. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Molecular Phylogenetics and Evolution 18: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Yabumoto, Y. & T. Uyeno, 2000. Inabaperca taniurai, a new genus and species of Miocene percoid fish from Tottori Prefecture, Japan. Bulletin of National Science of Museum, Tokyo, Series C (Geology & Paleontology) 26: 93–106.

    Google Scholar 

  • Zheng, C., 1989. Fishes of the Zhujiang River. Science Press, Beijing.

    Google Scholar 

  • Zhou, C., Q. Yang & D. Cai, 1988. On the classification and distribution of the sinipercinae fishes (family Serranidae). Zoological Research 9: 113–125.

    Google Scholar 

  • Zwickl, D. J. & D. M. Hillis, 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588–598.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our sincerest gratitude to Dr. D. Wang, Dr. L. Zhou, and Mrs. M. Pan for assistance in collecting specimens. We thank Dr. Y. Yabumoto for providing some literatures. We gracefully acknowledge the two anonymous reviewers whose critical review and insightful suggestions have improved the clarity and focus of the manuscript. This study was supported by grants (project no. 30130150) from the National Natural Science Foundation of China, and a grant (project no. [2005] 192) from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Nie.

Additional information

Handling editor: C. Sturmbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Guo, X. & Nie, P. Non-monophyly of fish in the Sinipercidae (Perciformes) as inferred from cytochrome b gene. Hydrobiologia 583, 77–89 (2007). https://doi.org/10.1007/s10750-006-0478-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0478-4

Keywords

Navigation