, Volume 583, Issue 1, pp 69–76 | Cite as

Genetic structure of populations of the mangrove crab Ucides cordatus (Decapoda: Ocypodidae) at local and regional scales

  • José F. Oliveira-Neto
  • Walter A. Boeger
  • Marcio R. PieEmail author
  • Antonio Ostrensky
  • Diogo B. Hungria
Primary Research Paper


The crab Ucides cordatus (Decapoda: Ocypodidae) is a species of considerable economic and ecological importance in mangrove areas of the Western Atlantic coast. However, habitat loss, overfishing, and a new infectious disease are causing substantial reductions in local stocks of this species, leading to a pressing need to design efficient management strategies. A crucial step in this design in an understanding of how the genetic variability of U. cordatus is distributed among estuaries throughout its range. In this study we assess the degree of spatial structure in the pattern of genetic variation of U. cordatus over local (estuaries located within 100 km from each other) and geographical scales (estuaries located farther than 2700 km from each other). Ninety individuals were collected from nine estuaries and analyzed using PCR-RFLP and RAPD techniques. The percentage of polymorphic bands within populations ranged from 15% to 46% for RFLP markers and from 40% to 70% for RAPD markers. Our results failed to demonstrate significant geographical structure in the pattern of genetic variation, indicating that populations of U. cordatus are capable of extensive gene flow among estuaries. The implications of these results for the management of U. cordatus populations are discussed.


Phylogeography RAPD RFLP AMOVA Nested Clade analysis 



The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided research and scholar assistantships to WAB and JFON, respectively. This study was funded by the Unidade Gestora do Fundo Paraná de Ciência e Tecnologia, State of Paraná, and the Serviço Brasileiro de Apoio às Micro e Pequenas Empresas (SEBRAE), State of Sergipe, Brazil. L. Patella, provided laboratory support.


  1. Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. R. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641.CrossRefGoogle Scholar
  2. Bilton, D. T., J. Paula & J. D. D. Bishop, 2002. Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science 55: 937–952.CrossRefGoogle Scholar
  3. Boeger, W. A., M. R. Pie, A. Ostrensky & L. Patella, 2005. Lethargic crab disease: multidisciplinary evidence supports a mycotic etiology. Memórias Do Instituto Oswaldo Cruz 100: 161–167.PubMedCrossRefGoogle Scholar
  4. Dyer, R. J., In prep. GenoServer: a server-based approach to the analysis of population genetic data. To be submitted to Molecular Ecology Notes. Available at
  5. Diele, K., 2000. Life history and population structure of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Crustacea, Decapoda Brachuyura) in Northern Brazil. PhD. Thesis, University of Bremen.Google Scholar
  6. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  7. Farnsworth, E. J. & A. M. Ellison, 1997. The global conservation status of mangroves. Ambio 26: 328–334.Google Scholar
  8. Glaser, M., 2003. Ecosystem, local economy and social sustainability: a case study of Caeté estuary, North Brazil. Wetlands Ecology and Management 11: 265–272.CrossRefGoogle Scholar
  9. Holguin, G., P. Vazquez & Y. Bashan, 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils 33: 265–278.CrossRefGoogle Scholar
  10. Marshall, N., 1994. Mangrove conservation in relation to overall environmental considerations. Hydrobiologia 285: 303–309.CrossRefGoogle Scholar
  11. McCartney, M., G. Keller & H. A. Lessios, 2000. Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Molecular Ecology 9: 1391–1400.PubMedCrossRefGoogle Scholar
  12. Nei, M., 1973. The theory and estimation of genetic distance. In Morton, N. E. (ed.), Genetic structure of Populations. University of Hawaii, Honolulu, 45–54.Google Scholar
  13. Nóbrega, R. R. & A. K. Nishida, 2003. Aspectos socioeconômicos e percepção ambiental dos catadores de caranguejo-uçá, Ucides cordatus (L.1763) (Decapoda, Brachyura) do estuário do rio Mamanguape, Nordeste do Brasil. Interciência 28: 36–43.Google Scholar
  14. Ong, J. E., 1995. The ecology of mangrove conservation and management. Hydrobiologia 295: 343–351.CrossRefGoogle Scholar
  15. Posada, D., K. A. Crandall & A. R. Templeton, 2000. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9: 487–488.PubMedCrossRefGoogle Scholar
  16. Reeb, C. A. & J. C. Avise, 1990. A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124: 397–406.PubMedGoogle Scholar
  17. Sathirathai, S. & E. B. Barbier, 2001. Valuing mangrove conservation in southern Thailand. Contemporary Economic Policy 19: 109–122.CrossRefGoogle Scholar
  18. Seutin, G., B. N. White & P. T. Boag, 1991. Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology–Revue Canadienne de Zoologie 69: 82–90.Google Scholar
  19. Schories, D., A. Barletta-Bergan, M. Barletta, U. Krumme, U. Mehlig & V. Rademaker, 2003. The keystone role of leaf–removing crabs in mangrove forests of North Brazil. Wetlands Ecology and Management 11: 243–255.CrossRefGoogle Scholar
  20. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin ver 2.000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  21. Templeton, A. R., 1998. Nested clade analysis of phylogeographic data: Testing hypotheses about gene flow and population history. Molecular Ecology 7: 381–397.PubMedCrossRefGoogle Scholar
  22. Templeton, A. R. & C. F. Sing, 1993. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669.PubMedGoogle Scholar
  23. Templeton, A. R., E. Routman & C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782.PubMedGoogle Scholar
  24. Walters, B. B., 2004. Local management of mangrove forests in the Philippines: Successful conservation or efficient resource exploitation? Human Ecology 32: 177–195.CrossRefGoogle Scholar
  25. Waples, R. S., 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89: 438–450.CrossRefGoogle Scholar
  26. Weber, L. I. & J. A. Levy, 2000. Genetic population structure of the swimming crab Callinectes danae (Crustacea: Decapoda) in Southern Brazil. Hydrobiologia 420: 203–210.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • José F. Oliveira-Neto
    • 1
    • 3
  • Walter A. Boeger
    • 1
    • 3
  • Marcio R. Pie
    • 1
    • 3
    Email author
  • Antonio Ostrensky
    • 2
    • 3
  • Diogo B. Hungria
    • 1
    • 3
  1. 1.Departamento de ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de ZootecniaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Grupo Integrado de Aqüicultura e Estudos AmbientaisUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations