Skip to main content

Broad-scale modelling of coastal wetlands: what is required?

Abstract

A Wetland Change Model has been developed to identify the vulnerability of coastal wetlands at broad spatial (regional to global (mean spatial resolution of 85 km)) and temporal scales (modelling period of 100 years). The model provides a dynamic and integrated assessment of wetland loss, and a means of estimating the transitions between different vegetated wetland types and open water under a range of scenarios of sea-level rise and changes in accommodation space from human intervention. This paper is an overview of key issues raised in the process of quantifying broad-scale vulnerabilities of coastal wetlands to forcing from sea-level rise discussing controlling factors of tidal range, sediment availability and accommodation space, identification of response lags and defining the threshold for wetland loss and transition.

References

  • J. R. L. Allen (1990) ArticleTitleSalt-marsh growth and stratification: a numerical model with special reference to the Severn Estuary, southwest Britain Marine Geology 95 77–96 Occurrence Handle10.1016/0025-3227(90)90042-I

    Article  Google Scholar 

  • J. R. L. Allen (2000) ArticleTitleMorphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe Quaternary Science Reviews 19 1155–1231 Occurrence Handle10.1016/S0277-3791(99)00034-7

    Article  Google Scholar 

  • D. R. Cahoon D. J. Reed (1995) ArticleTitleRelationships among marsh surface topography, hydroperiod and soil accretion in a deteriorating Louisiana salt marsh Journal of Coastal Research 11 357–369

    Google Scholar 

  • D. R. Cahoon P. Hensel J. Rybczyk K. L. McKee C. E. Proffitt B. A. Perez (2003) ArticleTitleMass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch Journal of Ecology 91 1093–1105 Occurrence Handle10.1046/j.1365-2745.2003.00841.x

    Article  Google Scholar 

  • J. J. Cantero R. Leon J. M. Cisneros A. Cantero (1998) ArticleTitleHabitat structure and vegetation relationships in central Argentina salt marsh landscapes Plant Ecology 137 79–100 Occurrence Handle10.1023/A:1008071813231

    Article  Google Scholar 

  • V. J. Chapman (1959) ArticleTitleStudies in saltmarsh ecology. IX. Changes in the saltmarsh vegetation at Scolt Head Island Journal of Ecology 47 619–639 Occurrence Handle10.2307/2257295

    Article  Google Scholar 

  • T. Christiansen P. L. Wiberg T. G. Milligan (2000) ArticleTitleFlow and sediment transport on a tidal salt marsh surface Estuarine, Coastal and Shelf Science 50 315–331 Occurrence Handle10.1006/ecss.2000.0548

    Article  Google Scholar 

  • F. Clements (Eds) (1916) Plant Succession: An Analysis of the Development of Vegetation Carnegie Institute Publication 242 Washington DC

    Google Scholar 

  • W. H. Conner J. W. Day (1988) ArticleTitleRising water levels in coastal Louisiana: implications for two coastal forested wetland areas in Louisiana Journal of Coastal Research 4 589–596

    Google Scholar 

  • J. W. Day J. F. Martin L. Cardoch P. H. Templet (1997) ArticleTitleSystem functioning as a basis for sustainable management of deltaic ecosystems Coastal Management 25 115–153 Occurrence Handle10.1080/08920759709362315

    Article  Google Scholar 

  • J. W. Day J. Rybczyk F. Scarton A. Rismondo D. Are G. Cecconi (1999) ArticleTitleSoil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: A field and modeling approach Estuarine Coastal and Shelf Science 49 607–628 Occurrence Handle10.1006/ecss.1999.0522

    Article  Google Scholar 

  • InstitutionalAuthorNameEnvironmental Systems Research Institute (ESRI) (2002) Digital Chart of the World (DCW) ESRI Redlands, California

    Google Scholar 

  • J. R. French (1993) ArticleTitleNumerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, UK Earth Surface Processes and Landforms 18 63–81

    Google Scholar 

  • J. R. French T. Spencer (1993) ArticleTitleDynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK Marine Geology 110 315–331 Occurrence Handle10.1016/0025-3227(93)90091-9

    Article  Google Scholar 

  • J. R. French T. Spencer (2002) Sea level rise A. Warren J. R. French (Eds) Habitat Conservation: Managing the Physical Environment J. Wiley Chichester 305–347

    Google Scholar 

  • J. R. French T. Spencer A. L. Murray N. A. Arnold (1995) ArticleTitleGeostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, UK Journal of Coastal Research 10 308–321

    Google Scholar 

  • Hammar-Klose, E. S. & E. R. Thieler, 2001. Coastal vulnerability to sea-level rise: a preliminary database for the U.S. Atlantic, Pacific and Gulf of Mexico coasts. U.S. Geological Survey, Digital Data Series DDS-68.

  • G. C. Harmsworth S. P. Long (1986) ArticleTitleAn assessment of saltmarsh erosion in Essex, England, with reference to the Dengie Peninsula Biological Conservation 35 377–387 Occurrence Handle10.1016/0006-3207(86)90095-9

    Article  Google Scholar 

  • Hinkel, J. & R. J. T. Klein, 2003. DINAS-COAST: Developing a Method and a Tool for Dynamic and Interactive Vulnerability Assessment. IGBP LOICZ Newsletter, 27 (June 2003), 1–4.

  • F. M. J. Hoozemans M. Marchand H. A. Pennekamp (1993) A Global Vulnerability Analysis: Vulnerability Assessment for Population, Coastal Wetlands and Rice Production on a Global Scale EditionNumber2 Delft Hydraulics Delft, The Netherlands

    Google Scholar 

  • M. S. Koch I. A. Mendelssohn K. L. McKee (1990) ArticleTitleMechanism for the hydrogen sulphide-induced growth in a Juncus-roemerianus marsh, west-central Florida Journal of Coastal Research 11 322–336

    Google Scholar 

  • J. F. Martin E. Reyes G. P. Kemp H. Mashriqui J. W. Day (2002) ArticleTitleLandscape modelling of the Missippi delta Bioscience 54 357–365 Occurrence Handle10.1641/0006-3568(2002)052[0357:LMOTMD]2.0.CO;2

    Article  Google Scholar 

  • McFadden, L., R. J. Nicholls, A. T. Vafeidis & R. S. J. Tol (in press). A methodology for modelling coastal space for global assessment. Journal of Coastal Research.

  • I. Mendelssohn J. T. Morris (2000) Ecophysiological controls on the growth of Spartina alterniflora M. A. Weinstein D. Kreeger (Eds) Concepts and Controversies in Tidal Marsh Ecology Kluwer New York

    Google Scholar 

  • B. A. Middleton K. L. McKee (2001) ArticleTitleDegradation of mangrove tissues and implications for peat formation in Belizean island forests Journal of Ecology 89 818–828 Occurrence Handle10.1046/j.0022-0477.2001.00602.x

    Article  Google Scholar 

  • W. J. Mitsch J. W. Day (2004) ArticleTitleThinking big with whole ecosystem studies and ecosystem restoration – the legacy of H.T. Odum Ecological Modelling 178 133–155 Occurrence Handle10.1016/j.ecolmodel.2003.12.038

    Article  Google Scholar 

  • W. J. Mitsch J. G. Gosselink (2000) Wetlands J. Wiley New York

    Google Scholar 

  • J. T. Morris P. V. Sundareshwar C. T. Nietch B. Kjerfve D. R. Cahoon (2002) ArticleTitleResponses of coastal wetlands to rising sea level Ecology 83 2869–2877

    Google Scholar 

  • R. J. Nicholls F. M. J. Hoozemans M. Marchand (1999) ArticleTitleIncreasing flood risk and wetland losses due to global sea-level rise: regional and global analyses Global Environmental Change 9 S69–S87 Occurrence Handle10.1016/S0959-3780(99)00019-9

    Article  Google Scholar 

  • J. A. Nyman R. D. DeLaune S. Pezeshki W. H. Patrick SuffixJr (1995) ArticleTitleOrganic matter fluxes and marsh stability in a rapidly submerging estuarine marsh Estuaries 18 207–218 Occurrence Handle10.2307/1352631

    Article  Google Scholar 

  • O. Oenema R. D. DeLaune (1988) ArticleTitleAccretion rates in saltmarshes in the eastern Scheldt, southwest Netherlands Estuarine, Coastal and Shelf Science 26 379–394 Occurrence Handle10.1016/0272-7714(88)90019-4 Occurrence Handle1:CAS:528:DyaL1cXktV2lsbo%3D

    Article  CAS  Google Scholar 

  • A. Oueslati (1992) ArticleTitleSalt marshes in the Gulf of Gabes (south eastern Tunisia): their morphology and recent dynamics Journal of Coastal Research 8 727–733

    Google Scholar 

  • J. D. Phillips (1986) ArticleTitleCoastal submergence and marsh fringe erosion Journal of Coastal Research 2 427–436

    Google Scholar 

  • Poff, L. F., N. M. Brinson & J. W. Jr. Day, 2002. Aquatic ecosystems and global climate change: potential impacts on inland freshwater and coastal wetland ecosystems. Pew Center for Global Climate Change, Arlington, VA.

  • D. J. Reed (1988) ArticleTitleSediment dynamics and deposition in a retreating coastal salt marsh Estuarine Coastal and Shelf Science 26 67–79 Occurrence Handle10.1016/0272-7714(88)90012-1

    Article  Google Scholar 

  • D. J. Reed (1995) ArticleTitleThe response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20 39–45

    Google Scholar 

  • D. J. Reed J. R. French (2001) Physical contexts for saltmarsh conservation A. Warren J. R. French (Eds) Habitat Conservation: Managing the Physical Environment J. Wiley Chichester 67–104

    Google Scholar 

  • E. Reyes J. L. White J. F. Martin G. P. Kemp J. W. Day W. Aravamuthan (2000) ArticleTitleLandscape modeling of coastal habit change in the Mississippi delta Ecology 81 2331–2349 Occurrence Handle10.2307/177118

    Article  Google Scholar 

  • J. E. Rooth J. C. Stevenson J. C. Cornwell (2003) ArticleTitleIncreased sediment accretion rates following invasion by Phragmites australis: The role of litter Estuaries 26 475–483 Occurrence Handle10.1007/BF02823724

    Article  Google Scholar 

  • R. A. Schwimmer J. E. Pizzuto (2000) ArticleTitleA model for the evolution of marsh shorelines Journal of Sedimentary Research 70 1026–1035 Occurrence Handle1:CAS:528:DC%2BD3cXotVWks7c%3D

    CAS  Google Scholar 

  • J. C. Stevenson L. G. Ward M. S. Kearney (1986) Vertical accretion in marshes with varying rates of sea level rise D. A. Wolfe (Eds) Estuarine Variability Academic Press Orlando 241–259

    Google Scholar 

  • Vafeidis, A. T., R. J. Nicholls, L. McFadden, J. Hinkel & P. S. Grashoff, 2004. Developing a Global Database for Coastal Vulnerability Analysis: Design Issues and Challenges. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXV Part B.

  • J. M. Visser C. E. Sasser R. H. Chabreck R. G. Linscombe (1998) ArticleTitleMarsh vegetation types of the Mississippi River Deltaic Plain Estuaries 21 818–828 Occurrence Handle10.2307/1353283

    Article  Google Scholar 

  • C. D. Woodroffe (1990) ArticleTitleThe impact of sea level rise on mangrove shorelines Progress in Physical Geography 14 483–520 Occurrence Handle10.1177/030913339001400404

    Article  Google Scholar 

  • C. D. Woodroffe (2002) Coasts: Form, Process and Evolution Cambridge University Press Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loraine McFadden.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

McFadden, L., Spencer, T. & Nicholls, R.J. Broad-scale modelling of coastal wetlands: what is required?. Hydrobiologia 577, 5–15 (2007). https://doi.org/10.1007/s10750-006-0413-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0413-8

Keywords

  • Salt Marsh
  • Coastal Wetland
  • Tidal Range
  • Sediment Supply
  • Wetland Type