Skip to main content
Log in

Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, M. B., P. Vajpayee, R. D. Tripathi, U. N. Rai, A. Kumar, N. Singh, H. M. Behl & S. P. Singh, 2000. Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin of Environmental Contamination and Toxicology 65: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Assche, F. V. & H. M. M. Clijsters, 1990. Effects of metals on enzyme activity in plants. Plant Cell Environment 13: 195–206.

    Article  Google Scholar 

  • Baccouch, S., A. Chaoui & E. E. Ferjani, 1998. Nickel induced oxidative damage and antioxidatant responses in Zea mays shoots. Plant Physiology and Biochemistry 36: 689–694.

    Article  CAS  Google Scholar 

  • Barai, B. K., R. S. Singhal & P. R. Kulkarni, 1997. Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichhornia crassipes). Carbohydrate Polymers 32: 229–231.

    Article  CAS  Google Scholar 

  • Baszynski, T., A. Tukendorf, M. Ruszkowska, E. Skorzynska & W. Maksymiec, 1988. Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. Journal of Plant Physiology 132: 708–713.

    CAS  Google Scholar 

  • Boller, M., 1997. Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Science and Technology 35: 77–78.

    Article  CAS  Google Scholar 

  • Bradford, M. N., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer, M. & T. H. Brouwer, 1998. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Archives of Biochemistry and Biophysics 351: 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Brown, B. T. & B. M. Rattigan, 1979. Toxicity of soluble copper and other metal ions to Elodea canadensis. Environmental Pollution 20: 303–314.

    Article  CAS  Google Scholar 

  • Chen, E. L., Y. A. Chen, L. M. Chen & Z. H. Liu, 2002. Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry 40: 439–444.

    Article  CAS  Google Scholar 

  • Cheng, S. C., W. Grosse, F. Karrenbrock & M. Thoennessen, 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering 18: 317–325.

    Article  Google Scholar 

  • Chua, H., 1998. Bio-accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China. The Science of the Total Environment 214: 79–85.

    Article  CAS  Google Scholar 

  • Devi, S. R. & M. N. V. Prasad, 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: responses of antioxidant enzymes and antioxidants. Plant Science 138: 157–165.

    Article  CAS  Google Scholar 

  • De-Vos, C. H. R., W. M. Ten-Bookum, R. Voojs, H. Schat & L. J. De-Kok, 1993. Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiology and Biochemistry 31: 151–158.

    CAS  Google Scholar 

  • Epstein, P. R., 1998. Weeds bring disease to the East African waterways. Lancet 351: 577.

    Article  Google Scholar 

  • Fernandes, J. C. & F. S. Henriques, 1990. Biochemical, physiological and structural effects of excess copper in plants. The Botanical Review 57: 246–273.

    Article  Google Scholar 

  • Fritioff, A., L. Kautsky & M. Greger, 2005. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution 133: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Gajalakshmi, S., E. V. Ramasamy & S. A. Abbasi, 2002. High rate compositing-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms). Bioresource Technology 83: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Ghabbour, E. A., G. Davies, Y. Y. Lam & M. E. Vozzela, 2004. Metal binding by humic acid isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt. Environmental Pollution 131: 445–451.

    Article  PubMed  CAS  Google Scholar 

  • He, M. C., Z. J. Wang & H. X. Tang, 2001. Modeling the ecological impact of heavy metals on aquatic ecosystems: a framework for the development of an ecological model. The Science of the Total Environment 266: 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. L. & L. Packer, 1968. Photoperoxidation in isolated chloroplast? Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Jouili, H. & E. Ferjani, 2003. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. Plant Biology and Pathology 326: 639–644.

    CAS  Google Scholar 

  • Kamal, M., A. E. Ghaly, N. Mahmoud & R. Cote, 2004. Phytoaccumulation of heavy metals by aquatic plants. Environment International 29: 1029–1039.

    Article  PubMed  CAS  Google Scholar 

  • Lasat, M. M., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality 31: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H. K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Packer, L. & R. Douce (eds), Plant Cell Membranes. Academic Press, San Diego, pp 350–382.

    Chapter  Google Scholar 

  • Luna, C. M., C. A. Gonzalez & V. S. Trippi, 1994. Oxidative damage caused by excess of copper in oat leaves. Plant and Cell Physiology 35: 11–15.

    CAS  Google Scholar 

  • Johnson, C. M. & A. Ulrich, 1959. Analytical methods for use in plant analysis. Bulletin of the California Agricultural. Experimental Station No. 766.

  • Jorge, L. G. T., R. P. V. Jose, G. D. L. Rosa & J. G. Parsons, 2005. Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews 249: 1797–1810.

    Article  CAS  Google Scholar 

  • Li, W. P., J. Wang & W. Li, 1995. Application of water hyacinth to the removal of heavy metals from electroplate waste water. China Journal of Ecology 14: 30–35.

    Google Scholar 

  • Mal, T. K., P. Adorjan & A. L. Corbett, 2002. Effect of copper on growth of an aquatic macrophyte Elodea canadensis. Environmental Pollution 120: 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Mejare, M. & L. Bulow, 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology 19: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Nedelkoska, T. V. & P. M. Doran, 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering 13: 549–561.

    Article  CAS  Google Scholar 

  • Okamoto, O. K., E. Pinto, R. Latome, E. J. H. Bechara & P. Colepicolo, 2001. Antioxidant modulation in response to metal-induced oxidative stress in algal choroplasts. Archives of Environmental Contamination and Toxicology 40: 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Pioto, C. L R., A. Caconia & M. M. Souza, 1987. Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. Water Science and Technology 19: 89–101.

    Google Scholar 

  • Prasad, M. N. V., P. Malec, A. Waloszek, M. Bojko & K. Strzalka, 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science 161: 881–889.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. & K. Strzalka, 1999. Impact of heavy metals on photosynthesis. In Prasad M. N. V. & J. Hagemeyer (eds), Heavy Metal stress in Plants: from Molecules to Ecosystems. Springer Verlag, Berlin-Heidelberg, pp. 117–138.

    Google Scholar 

  • Sansalone, J. J., S. G. Buchberger & S. R. Al-Abed, 1996. Fractionation of heavy metals in pavement runoff. The Science of the Total Environment 189/190: 371–378.

    Article  CAS  Google Scholar 

  • So, L. M., L. M. Chu & P. K. Wong, 2003. Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52: 1499–1503.

    Article  PubMed  CAS  Google Scholar 

  • Soltan, M. E. & M. N. Rashed, 2003. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research 7: 321–334.

    Article  CAS  Google Scholar 

  • Weckx, J. E. J. & H. M. M. Clijsters, 1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum 96: 506–512.

    Article  CAS  Google Scholar 

  • Xiong, Z. -T. & H. Wang, 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environmental Toxicology 20: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. E., Y. Feng, Z. L. He & P. J. Stoffella, 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18: 339–353.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Q. & Z. Rengel, 1999. Micronutrient deficiency influences plant growth and activities of superoxide dismutases in Narrow-leafed lupins. Annals of Botany 83: 175–182.

    Article  CAS  Google Scholar 

  • Zaranyika, M. F. & T. Ndapwadza, 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes [Mart.]) in Mukuvisi and Manyame Rivers, Zimbabwe. Journal of Environmental Science and Health 30: 157–169.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (20577013) and the Scientific and Technological Innovation Scheme of Water Conservancy Department in China (5CX2003-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanwei Zhu.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Zhang, L., Hamilton, D. et al. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579, 211–218 (2007). https://doi.org/10.1007/s10750-006-0404-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0404-9

Keywords

Navigation