Advertisement

Hydrobiologia

, Volume 579, Issue 1, pp 95–113 | Cite as

Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition

  • Marjorie L. BrooksEmail author
  • Joseph S. Meyer
  • Diane M. McKnight
Primary Research Paper

Abstract

In natural waters, the uptake of transition metals such as copper (Cu) by aquatic biota depends on the activity of the free cupric ion ({Cu2+}) rather than on total Cu concentration. Thus, an important ecological function of dissolved organic matter (DOM) in aquatic ecosystems is Cu–DOM complexation, which greatly decreases the {Cu2+}. However, Cu bioavailability is greatly modified by source and environmental history of DOM because DOM affinity for Cu varies by orders of magnitude among DOM sources; moreover, DOM is photochemically unstable. During 72-h irradiation experiments at intensities approximating sunlight with DOM from a palustrine wetland and a third-order river, we investigated photooxidative effects on DOM complexation of Cu as well as spectral and chemical changes in DOM that might explain altered Cu complexation. Irradiation decreased Cu complexation by riverine DOM, but unexpectedly increased Cu complexation by wetland DOM, resulting in 150% greater {Cu2+} in riverine DOM at the same dissolved organic carbon concentrations. The specific ultraviolet absorption (SUVa) and humic substances tracked photochemical changes in the conditional stability constants of Cu–DOM complexes, suggesting that the aromaticity of DOM influences its affinity for Cu. Carbonyl concentration in 13C nuclear magnetic resonance spectra (13C-NMR) covaried directly with Cu binding-site densities in DOM. However, no aspect of Cu–DOM complexation consistently covaried with fluorophores (i.e., the fluorescence index) or low molecular weight organic acids. Our results suggest that global increases in UV radiation will affect Cu–DOM complexation and subsequent Cu toxicity depending on light regime as well as DOM source.

Keywords

Dissolved organic matter DOC Cu Bioavailability Photooxidation Biotic ligand model 

Notes

Acknowledgements

This work was funded by the University of Wyoming National Science Foundation EPSCoR program and a United States Environmental Protection Agency STAR Fellowship awarded to MLB. We thank Megin Rux, Maura Rux, and Dr. Richard Shoemaker for field and technical assistance. JSM was funded by USEPA through a subcontract for the University of Delaware’s Center for the Study of Metals in the Environment to the University of Wyoming.

References

  1. Aiken, G. R., D. M. McKnight, K. A. Thorn & E. M. Thurman, 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry 18: 567–573.CrossRefGoogle Scholar
  2. Alberts, J. J., Z. Filip & N. Hertkorn, 1992. Fulvic and humic acids isolated from groundwater: compositional characteristics and cation binding. Journal of Contaminant Hydrology 11: 317–330.CrossRefGoogle Scholar
  3. Allison, J. D., D. S. Brown & K. J. Novo-Gradac, 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.1 Users’ Manual. US Environmental Protection Agency, Athens, GA.Google Scholar
  4. APHA, AWWA and WEF (American Public Health Association, American Water Works Association and Water Environment Federation), 1995. Standard Methods for the Examination of Water and Wastewater. 19th edn. American Public Health Association, Washington, DC.Google Scholar
  5. Bartschat, T., S. E. Cabaniss & Morel F. M. M., 1992. An oligoelectrolyte model for cation binding by humic substances. Environmental Science and Technology 26: 284–294.CrossRefGoogle Scholar
  6. Benedetti, M. F., C. J. Milne, D. G. Kinniburgh, W. H. vanRiemsdijk & L. K. Koopal, 1995. Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environmental Science and Technology 29: 446–457.Google Scholar
  7. Benner, R. & B. Biddanda. 1998. Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnology and Oceanography 43: 1373–1378.Google Scholar
  8. Bourbonniere, R. A., W. L. Miller & R. G. Zepp, 1997. Distribution, flux, and photochemical production of carbon monoxide in a boreal beaver impoundment. Journal of Geophysical Research 102: 29321–29329.CrossRefGoogle Scholar
  9. Breault, R. F., J. A. Colman, G. R. Aiken & D. McKnight, 1996. Copper speciation and binding by organic matter in copper-contaminated streamwater. Environmental Science and Technology 30: 3477–3486.CrossRefGoogle Scholar
  10. Brooks, M. L., C. J. Boese & J. S. Meyer, 2006. Complexation and time-dependent accumulation of copper by larval fathead minnows (Pimephales promelas): implications for modeling toxicity. Aquatic Toxicology 78: 42–49.PubMedCrossRefGoogle Scholar
  11. Bushaw, K. L., R. G. Zepp, M. A. Tarr, D. Schulz-Jander, R. A. Bourbonniere, R. E. Hodson , W. L. Miller, D. Bronk & M. A. Moran, 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381: 404–407.CrossRefGoogle Scholar
  12. Castellan, A., C. Vanucci & H. Bouas-Laurent, 1987. Photochemical degradation of lignin through α C–O bond cleavage of non phenolic benzylaryl ether units. a study of the photochemistry of α (2′, 4′ 6′-trimethyl-phenoxy)−3,4 dimethoxy toluene. Holzforschung 41: 231–238.CrossRefGoogle Scholar
  13. Certini, G., A. Agnelli, G. Corti & A. Capperucci, 2004. Composition and mean residence time of molecular weight fractions of organic matter extracted from two soils under different forest species. Biogeochemistry 71: 299–316.CrossRefGoogle Scholar
  14. Croué, J.-P., M. F. Benedetti, D. Violleau & J. A. Leenheer, 2003. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environmental Science and Technology 37: 328–336.PubMedCrossRefGoogle Scholar
  15. De Haan, H., 1993. Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnology and Oceanography 38: 1072–1076.Google Scholar
  16. De Schamphelaere, K. A. C., F. M. Vasconcelos, F. M. G. Tack, H. E. Allen, C. R. Janssen. 2004. Effects of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environmental Toxicology and Chemistry 23: 1248–1255.PubMedCrossRefGoogle Scholar
  17. Del Vecchio, R. & N. V. Blough, 2002. Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Marine Chemistry 78: 231–253.CrossRefGoogle Scholar
  18. Drever, J. I. 1997. The Geochemistry of Natural Waters, 3rd ed. Simon & Schuster.Google Scholar
  19. Erickson, R. J., D. A. Benoit, V. R. Mattson, H. P. Nelson Jr. & E. N. Leonard, 1996. The effects of water chemistry on the toxicity of copper to fathead minnows. Environmental Toxicology and Chemistry 15: 181–193.CrossRefGoogle Scholar
  20. Green, S. A., F. M. M. Morel & N. V. Blough, 1992. Investigation of the electrostatic properties of humic substances by fluorescence quenching. Environmental Science and Technology 26: 294–302.CrossRefGoogle Scholar
  21. Harvey, G. R., D. A. Boran, L. A. Chesal & J. M. Tokar, 1983. The structure of marine fulvic and humic acids. Marine Chemistry 12: 119–132.CrossRefGoogle Scholar
  22. Herbelin, A. & J. Westall, 1999. FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. Version 4.0 User’s Manual. Oregon State University.Google Scholar
  23. Hering, J. G. & F. M. M. Morel, 1988. Humic acid complexation of calcium and copper. Environmental Science and Technology 22: 1234–1237.CrossRefGoogle Scholar
  24. Hu, C., F. E. Muller-Karger & R. G. Zepp, 2002. Absorbance, absorption coefficient Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnology and Oceanography 47: 1261--1267.Google Scholar
  25. Jandl, G., H.-R. Schlulten & P. Leinweber, 2002. Quantification of long-chain fatty acids in dissolved organic matter and soils. Journal of Plant Nutrition and Soil Science 165: 133–139.CrossRefGoogle Scholar
  26. Kieber, R. J., L. H. Hydro & P. J. Seaton, 1997. Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances. Limnology and Oceanography 42: 1454–1462.Google Scholar
  27. Klapper, L., D. M. McKnight, J. R. Fulton, E. L. Blunt-Harris, K. P. Nevin, D. R. Lovley & P. G. Hatcher, 2002. Fulvic acid oxidation state detection using fluorescence spectroscopy. Environmental Science and Technology 36: 3170–3175.PubMedCrossRefGoogle Scholar
  28. Langford, C. H., M. Wingham & V. S. Sastri, 1973. Ligand photooxidation in copper(II) complexes of nitrilotriacetic acid. Environmental Science and Technology 7: 820–822.CrossRefGoogle Scholar
  29. Leenheer, J. A., G. K. Brown, P. MacCarthy & S. E. Cabaniss, 1998. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia. Environmental Science and Technology 32: 2410–2416.CrossRefGoogle Scholar
  30. Leenheer, J. A., R. L. Wershaw & M. M. Reddy, 1995. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures. Environmental Science and Technology 29: 399–405.Google Scholar
  31. MacRae, R. K., D. E. Smith, N. Swoboda-Colberg, J. S. Meyer & H. L. Bergman, 1999. Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: implications for assessing bioavailable metal. Environmental Toxicology and Chemistry 18: 1180–1189.CrossRefGoogle Scholar
  32. Maurice, P. A., M. J. Pullin, S. E. Cabaniss, Q. Zhou, K. Namjesnik-Dejanovic & G. Aiken, 2002. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates. Water Research 36: 2357–2371.PubMedCrossRefGoogle Scholar
  33. McCallister, S. L., J. E. Bauer & E. A. Canuel, 2006. Bioreactivity of estuarine dissolved organic matter: a combined geochemical and microbiological approach. Limnology and Oceanography, 51: 94–100.Google Scholar
  34. McKenzie, R., B. Connor & G. Bodeker, 1999. Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285: 1709–1771.PubMedCrossRefGoogle Scholar
  35. McKnight, D. M. & G. R. Aiken, 1998. Sources and age of aquatic humus. In Hessen D. O. & L. J. Tranvik (eds), Aquatic Humic Substances. Springer-Verlag, New York, 9–39.Google Scholar
  36. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  37. McKnight, D. M., R. Harnish, R. L. Wershaw, J. S. Baron & S. Schiff, 1997. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36: 99–124.CrossRefGoogle Scholar
  38. McKnight, D. M., E. M. Thurman & R. L. Wershaw, 1983. Complexation of copper by aquatic humic substances from different environments. Science of the Total Environment 28: 65–76.CrossRefGoogle Scholar
  39. Meador, J. P., 1991. The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquatic Toxicology 19: 13–32.CrossRefGoogle Scholar
  40. Miller, W. L., M. A. Moran, W. M. Sheldon, R. G. Zepp & S. Opsahl, 2002. Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnology and Oceanography 47: 343–352.Google Scholar
  41. Miller, W. L. & R. G. Zepp, 1995. Photochemical production of dissolved inorganic carbon from allochthonous organic matter: significance to the oceanic organic carbon cycle. Geophysical Research Letters 22: 417–420.CrossRefGoogle Scholar
  42. Moffett, J. W., 1995. Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Research 42: 1273–1295.CrossRefGoogle Scholar
  43. Moffett, J. W. & R. G. Zika, 1987. Photochemistry of copper complexes in sea water. In Zika R. G. & W. J. Cooper (eds), Photochemistry of Environmental Aquatic Systems. American Chemical Society, New York, 116–130.Google Scholar
  44. Moffett, J. W., R. G. Zika. & L. E. Brand, 1990. Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Research 37: 27–36.CrossRefGoogle Scholar
  45. Molot, L. A. & P. J. Dillon, 1997. Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochemical Cycles 11: 357–365.CrossRefGoogle Scholar
  46. Moore, T., L. Matos & N. Roulet, 2003. Dynamics and chemistry of dissolved organic carbon in Precambrian Shield catchments and an impounded wetland. Canadian Journal of Fisheries and Aquatic Sciences 60: 612–623.CrossRefGoogle Scholar
  47. Moran, M. A., W. M. Sheldon Jr. & R. G. Zepp, 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45: 1254–1264.Google Scholar
  48. Moran, M. A. & R. G. Zepp, 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography 42: 1307–1316.Google Scholar
  49. Obernosterer, I. & R. Benner, 2004. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography 49: 117–124.Google Scholar
  50. Obernosterer, I., R. Sempéré & G. J. Herndl, 2001. Ultraviolet radiation induces reversal of the bioavailability of DOM to marine bacterioplankton. Aquatic Microbial Ecology 24: 61–68.Google Scholar
  51. Opsahl, S. & R. Benner, 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnology and Oceanography 43: 1297–1304.Google Scholar
  52. Pasquarello, A., I. Petri, P. S. Salmon, O. Parisel, R. Car, É. Tóth, D. H. Powell, H. E. Fischer, L. Helm & A. E. Merbach, 2001. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science 291: 856–859.PubMedCrossRefGoogle Scholar
  53. Perdue, E. M., 1985. Acidic functional groups of humic substances. In Aiken G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), Humic Substances in Soil, Sediment and Water. Wiley, New York, 493–526.Google Scholar
  54. Playle, R. C., D. G. Dixon & K. Burnison, 1993. Copper and cadmium binding to fish gills: estimates of metal-gill stability constants and modelling of metal accumulation. Canadian Journal of Fisheries and Aquatic Sciences 50: 2678–2687.CrossRefGoogle Scholar
  55. Richards, J. G., P. J. Curtis, B. K. Burnison & R. C. Playle, 2001. Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environmental Toxicology and Chemistry 20: 1159–1166.PubMedCrossRefGoogle Scholar
  56. Sander, S., J. P. Kim, B. Anderson, K. A. Hunter, 2005. Effect of UVB irradiation on Cu2+-binding organic ligands and Cu2+ speciation in alpine lake water of New Zealand. Environmental Chemistry 2: 56–62.CrossRefGoogle Scholar
  57. Schwartz, M. L., P. J. Curtis & R. C. Playle, 2004. Influence of natural organic matter source on acute copper, lead, and cadmium toxicity to Rainbow Trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 23: 2889–2899.PubMedCrossRefGoogle Scholar
  58. Serkiz, S. M. & E. M. Perdue, 1990. Isolation of dissolved organic matter from the Suwannee River using reverse osmosis. Water Research 24: 911–916.CrossRefGoogle Scholar
  59. Shank, G. C., R. F. Whitehead, M. L. Smith, S. A. Skrabal & R. J. Kieber, 2006. Photodegradation of strong copper-complexing ligands in organic-rich estuarine waters. Limnology and Oceanography 51: 884–892.Google Scholar
  60. Sun, Y. P., K. L. Nguyen & A. F. A. Wallis, 1998. Ring-opened products from reaction of lignin model compounds with UV-assisted peroxide. Holzforschung 52: 61–66.CrossRefGoogle Scholar
  61. Sunda, W. G. & P. J. Hanson, 1979. Chemical speciation of copper in river water. In Jenne E. A. (ed.), Chemical Modelling in Aquatic Systems. American Chemical Society. Washington, DC, 147–180.Google Scholar
  62. Taube, C. M., 2000. Instructions for winter lake mapping. In Schneider, J. C. (ed.), Manual of Fisheries Survey Methods II: with Periodic Updates. Michigan Department of Natural Resources, Ann Arbor: Chapter 12: 1–4.Google Scholar
  63. Taylor, L. N., C. M. Wood & D. G. McDonald, 2003. An evaluation of sodium loss and gill metal binding properties in rainbow trout and yellow perch to explain species differences in copper tolerance. Environmental Toxicology and Chemistry 22: 2159–2166.Google Scholar
  64. Thomas, D. N. & R. J. Lara, 1995. Photodegradation of algal derived dissolved organic carbon. Marine Ecology Progress Series 116: 309–310.Google Scholar
  65. Tipping, E., 1993. Modeling the competition between alkaline earth cations and trace metal species for binding by humic substances. Environmental Science and Technology 27: 520–529.CrossRefGoogle Scholar
  66. Tipping, E., 1994. WHAM – a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Computers and Geosciences 20: 973–1023.CrossRefGoogle Scholar
  67. Tipping, E., 2002. Cation Binding by Humic Substances, Cambridge University Press, Cambridge. 434 pp.Google Scholar
  68. Tranvik, L. J., S. Kokalj, 1998. Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquatic Microbial Ecology 14: 301–307.Google Scholar
  69. USEPA (US Environmental Protection Agency), 2003. 2003 Draft update of ambient water quality criteria for copper. EPA 822-R-03–026, Office of Water, US Environmental Protection Agency, Washington, DC URL:http://www.epa.gov/waterscience/criteria/copper.Google Scholar
  70. Voelker, B. M., D. L. Sedlak & O. C. Zafiriou, 2000. Chemistry of superoxide radical in seawater: reactions with organic Cu complexes. Environmental Science and Technology 34: 1036–1042.CrossRefGoogle Scholar
  71. Weber, J. H., 1988. Binding and transport of metals by humic materials. In Frimmel F. H. & R. F. Christman (eds), Humic Substances and Their Role in the Environment. John Wiley & Sons Limited, New York, 165–178.Google Scholar
  72. Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii & K. Mopper, 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology 37: 4702–4708.PubMedCrossRefGoogle Scholar
  73. Wershaw, R. L., 1992. Membrane-micelle model for humus in soils and sediments and its relation to humification. In Peck D. L. (ed.), US Geological Survey Open-File Report 91-513. US Geological Survey, Denver, CO, 1–64.Google Scholar
  74. Wetzel, R. G. 2001. Limnology, 3rd edn. Academic Press.Google Scholar
  75. Wetzel, R. G., P. G. Hatcher & T. S. Bianchi, 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography 40: 1369–1380.CrossRefGoogle Scholar
  76. Xie, H., O. C. Zafiriou, W.-J. Cai, R. G. Zepp & Y. Wang, 2004. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science and Technology 38: 4113–4119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Marjorie L. Brooks
    • 1
    • 2
    Email author
  • Joseph S. Meyer
    • 1
  • Diane M. McKnight
    • 3
  1. 1.Department of Zoology and PhysiologyUniversity of WyomingLaramieUSA
  2. 2.National Center for Ecological Analysis and SynthesisUniversity of California, Santa BarbaraSanta BarbaraUSA
  3. 3.Institute of Artic and Alpine ResearchUniversity of ColoradoBoulderUSA

Personalised recommendations