, Volume 579, Issue 1, pp 69–83 | Cite as

Seasonal dynamics of phytoplankton in the Gulf of Aqaba, Red Sea

  • Tariq Al-Najjar
  • Mohammad I. Badran
  • Claudio Richter
  • Michael Meyerhoefer
  • Ulrich Sommer
Primary Research Paper


Seawater samples were collected biweekly from the northern Gulf of Aqaba, Red Sea, for Phytoplankton analysis during the period May 1998 to October 1999. Microscopic counts and HPLC methods were employed. Procaryotic and eucaryotic ultraplankton dominated throughout most of the year, with larger nano- and microplankton making up only 5% of the photosynthetic biomass. Moderate seasonal variations in the 0–125 m integrated Chl a contrasted with a pronounced seasonal succession of the major taxonomic groups, reflecting the changes in the density stratification of the water column: Prochlorococcus dominated during the stratified summer period and were almost absent in winter. Chlorophyceae and Cryptophyceae were dominant during winter mixing but scarce or absent during summer. Diatoms and Synechococcus showed sharp and moderate biomass peaks in late winter and spring respectively, but remained at only low Chl a levels for the rest of the year. Chrysophyceae, Prymnesiophyceae and the scarce Dinophyceae showed no clear seasonal distribution pattern. The implications of alternating procaryotic and eucaryote dominated algal communities for the Red Sea pelagic food web are discussed.


Chlorophyll a Pigments Nutrients HPLC CHEMTAX Gulf Aqaba Red Sea 

Supplementary material

10750_2006_0365_MOESM1_ESM.pdf (359 kb)
ESM 1 (PDF 360 kb)


  1. Al-Najjar, T., 2000. The seasonal dynamics and grazing control of phyto- and mesozooplankton in the northern Gulf of Aqaba. PhD thesis, Bremen University.Google Scholar
  2. Al-Najjar, T. H., M. I. Badran & M. Al-Zibdeh, 2003. Seasonal cycle of surface zooplankton biomass in relation to chlorophyll a in the Gulf of Aqaba, Red Sea. Abhath al-Yarmouk, Basic Science and Engineering. 12(1): 109–118.Google Scholar
  3. Al-Qutob, M., C. Häse, M. M. Tilzer & B. Lazar, 2002. Phytoplankton drives nitrite dynamics in the Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 239: 233–239.Google Scholar
  4. Althuis, I., W. W. C. Gieskes, L. Villerius & F. Colijn, 1994. Interpretation of fluorometric chlorophyll registrations with algal pigment analysis along a ferry transect in the southern North Sea. Netherland Journal Sea Research 33: 37–46.CrossRefGoogle Scholar
  5. Arar, E. J. & G. B. Collins, 1997. Method 445.0. In vitro determination of chlorophyll a and phaeophytin a in marine and freshwater algae by fluorescence. Revision 1.2. U.S. Environmental Protection Agency, Cincinnati, Ohio. 12 pp.Google Scholar
  6. Badran, M. I., 2001. Dissolved Oxygen, Chlorophyll a and Nutrients: Seasonal Cycles in Waters of the Gulf of Aquaba, Red Sea. Aquatic Ecosystem Health and Management. 4: 139–150.CrossRefGoogle Scholar
  7. Badran, M. I. & P. Foster, 1998. Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba, Red Sea. Aquatic Ecosystem Health and Management 1: 75–89.CrossRefGoogle Scholar
  8. Banse, K., 1992. Zooplankton: Pivotal role in the control of ocean production. International Council for the Exploration of the Sea, Journal of Marine Science 52: 265–277.Google Scholar
  9. Belogorskaya, E. V., 1970. Qualitative and quantitative distribution of phytoplankton in the Red Sea and Gulf of Aden in October-November 1963. Biol Morya (Vladivost)/Marine Biology (Vladivost) 21: 133–152.Google Scholar
  10. Bidigare, R. R., J. Marra, T. D. Dickey, R. Iturriaga, K. S. Baker, R. C. Smith & H. Pak, 1990. Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during spring 1985. Marine Ecology Progress Series 60: 113–122.Google Scholar
  11. Burkill, P. H., R. J. G. Leakey, N. J. P. Owens & R. F. C. Mantoura, 1993. Synechococcus and its importance to the microbial foodweb of the northwestern Indian Ocean. Deep-Sea Research 40: 773–782.Google Scholar
  12. Campbell, L., H. Liu, H. A. Nolla & D. Vaulot, 1997. Annual variability of picoplankton in the subtropical North Pacific Ocean at Station ALOHA. Deep-Sea Research. 44: 167–192.CrossRefGoogle Scholar
  13. Campbell, L. & D. Vaulot, 1993. Photosynthetic picoplankton community structure in the Subtropical North Pacific Ocean near Hawaii. Deep-Sea Research 40: 2043–2060.CrossRefGoogle Scholar
  14. Christaki, U., S. Jacquet, J. R. Dolan, D. Vaulot & F. Rassoulzadegan, 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnology and Oceanography 44: 52–61.Google Scholar
  15. DuRand, M. D., R. J. Olson & S. W. Chisholm, 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Research 48: 8–9.Google Scholar
  16. Dusenberry, J. A., R. J. Olson & S. W. Chisholm, 2000. Field observations of oceanic mixed layer dynamics and picophytoplankton photoacclimation. Journal of Marine Systems 24: 3–4.CrossRefGoogle Scholar
  17. Egeland, E. S., W. Eikrem, J. Throndsen, C. Wilhelm, M. Zapata & S. Liaaen-Jensen, 1995. Carotenoids from further prasinophytes. Biochemistry and System Ecology 23: 747–755.CrossRefGoogle Scholar
  18. Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Half-saturation constant for uptake of nitrate and ammonia by marine phytoplankton. Limnology and Oceanography 14: 912–920.CrossRefGoogle Scholar
  19. Erez, J., J. Silverman & B. Lazar, 2000. Community metabolism of coral reefs in the Red Sea Proc 9th Int. Coral Reef Conference Denpasar, Bali, Indonesia (Abstract).Google Scholar
  20. Farstey, V., B. Lazar & A. Genin, 2002. Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer. Marine Ecology Progress Series 238: 91–100.Google Scholar
  21. Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.PubMedCrossRefGoogle Scholar
  22. Genin, A., B. Lazar & S. Brenner, 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377: 507–510.CrossRefGoogle Scholar
  23. Gieskes, W. W. C. & G. W. Kraay, 1983. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology 75: 179–185.CrossRefGoogle Scholar
  24. Gieskes, W. W. & G. W. Kraay, 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellate Corymbellus aureus during the spring bloom in the open northern North Sea in 1983. Marine Biology 92: 45–52.CrossRefGoogle Scholar
  25. Gin, K. Y. H., S. W. Chisholm, R. J. Olson, 1999. Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station. Deep Sea Research 46: 1221–1245.CrossRefGoogle Scholar
  26. Grossart, H. P. & M. Simon, 2002. Bacterioplankton dynamics in the Gulf of Aqaba and the northern Red Sea in early spring. Marine Ecology Progress Series 239: 263–276.Google Scholar
  27. Guillou, L., S. Jacquet, M. J. Chretiennot-Dinet & D. Vaulot, 2001. Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquatic Microbiology Ecology 26: 201–207.Google Scholar
  28. Hempel, G. & C. Richter, 2002. The Red Sea Programme: sailing a nutshell of hope in Red Sea waters. Marine Ecology Progress series 239: 231–232.Google Scholar
  29. Hooks, C. E., R. R. Bidigare, M. D. Keller, R. R. L. Guillard, 1988. Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures. Journal of Phycology 24: 571–580.Google Scholar
  30. Hulings, N. C., 1989. A review of marine science research in the Gulf of Aqaba. Publications of the Marine Science Station Aqaba, Jordan 6: 1–267.Google Scholar
  31. Iturriaga, R., B. G. Mitchell, 1986. Chrooccoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Marine Ecology Progress series 28: 291–297.Google Scholar
  32. Jeffrey, S. W. & S. W. Wright, 1994. Photosynthetic pigments in the Haptophyceae. In: Green J.C. & B. S. C. Leadbeater (eds). The Haptophyte algae. Systematics Association Special Volume, Vol. 51. Claredon Press, Oxford, UK: 111–132.Google Scholar
  33. Kemp, W. M. & W. J. Mitch, 1979. Turbulence and phytoplankton diversity: A general model of the “paradox of plankton”. Ecological Modelling 7: 201–222.CrossRefGoogle Scholar
  34. Kimor, B., 1971. Some aspects on the vertical distribution of the microplankton in the Gulf of Eilat (Red Sea) Proceedings Journal of Oceanography Assesment 442–444.Google Scholar
  35. Kimor, B., 1976. Some aspects of vertical distribution and seasonal succession in the microplankton of the Gulf of Eilat (Red Sea). Rep No 5, H Steinitz Marine Biology Lab, Eilat, Israel.Google Scholar
  36. Kimor, B. & B. Golandsky, 1977. Microplankton of the Gulf of Elat: Aspects of seasonal and bahtymetric distribution. Marine Biology 42: 55–67.CrossRefGoogle Scholar
  37. Kimor, B., N. Gordon & A. Neori, 1992. Symbiotic associations among the microplankton in oligotrophic marine environments, with special reference to the Gulf of Aqaba, Red Sea. Journal of Plankton Research 14: 1217–1231.CrossRefGoogle Scholar
  38. Klein, B. & A. Sournia, 1987. A daily study of the diatom spring bloom at Roscoff (France) in 1985. 2. Phytoplankton pigment composition studies by HPLC analysis. Marine Ecology Progress series 37: 265–275.Google Scholar
  39. Klinker, J., Z. Reiss, C. Kropach, I. Levanon, H. Harpaz & Y. Shapiro, 1978. Nutrients and biomass distribution in the Gulf of Aqaba (Eilat), Red Sea. Marine Biology 45: 53–64.CrossRefGoogle Scholar
  40. Landry, M. R. & D. L. Kirchman, 2002. Microbial community structure and variability in the Tropical Pacific. Deep-Sea Research 14–13: 2669–2693.Google Scholar
  41. Levanon-Spanier, I., E. Padan & Z. Reiss, 1979. Primary production in a desert-enclosed sea. The Gulf of Eilat. (Aqaba), Red Sea. Deep-Sea Research 26: 673–685.Google Scholar
  42. Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. Journal of Ecology 66: 849–880.CrossRefGoogle Scholar
  43. Li, W. K. W., T. Zohar, Y. Z. Yacobi & A. M. Wood, 1983a. Ultraphytoplankton in the eastern Mediterranean Sea: towards deriving phytoplankton biomass from flow cytometric measurnments of abundance, fluorescence and high scatter. Marine Ecology Progress Series 102: 79–87.Google Scholar
  44. Li, W. K. W., D. V. Subba Rao, W. G. Harrison, L. C. Smith, J. J. Cullen, B. Irwin & T. Platt, 1983b. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.CrossRefGoogle Scholar
  45. Lindell D. & A. F. Post, 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnology and Oceanography 40: 1130–1141.Google Scholar
  46. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.Google Scholar
  47. Mackey, M. D., H. W. Higgins, D. J. Mackey & S. W. Wright, 1997. CHEMTAX user’s manual: A program for estimating class abundances from chemical markers - application to HPLC measurements of phytoplankton pigments. Report CSIRO Marine Lab 229: 1–41.Google Scholar
  48. Mackey, M. D., D. J. Mackey, H. W. Higgins & S. W. Wright, 1996. CHEMTAX - a program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology Progress series 144: 265–283.Google Scholar
  49. Manasrah, R., M. I. Badran, H. U. Lass & W. Fennel, 2004. Circulation and deep-water formation during spring in the northern Red Sea and the Gulf of Aqaba. Oceanologia 46(1): 1–19.Google Scholar
  50. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 496–510.Google Scholar
  51. Moore, L. R., A. F. Post, G. Rocap & S. W. Chisholm, 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989–996.Google Scholar
  52. Moore, L. R., G. Rocap & S. W. Chisholm, 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464–467.PubMedCrossRefGoogle Scholar
  53. Morcos, S. A., 1970. Physical and chemical oceanography of the Red Sea. Oceanography and Marine Biology An Annual Review 8: 73–202.Google Scholar
  54. Moutin, T., and others, 2002. Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnology and Oceanography 47: 1562–1567.Google Scholar
  55. Niemann, H., C. Richter, H. M. Jonkers & M. I. Badran, 2004. Red Sea gravity currents cascade near reef phytoplankton to the twilight zone. Marine Ecology. Progress Series. 269: 91–99.Google Scholar
  56. Olson, R. J., S. W. Chisholm, E. R. Zettler, M. A. Altabet & J. A. Dusenberry, 1990. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Research 37: 1033–1051.CrossRefGoogle Scholar
  57. Plähn, O., B. Baschek, T. H. Badewien, M. Walter & M. Rhein, 2002. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea. Journal of Geophysical Research (C Oceans) 107: 1–18.Google Scholar
  58. Platt, T., D. V. S. Rao & B. Irwin, 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301: 702–704.CrossRefGoogle Scholar
  59. Post, A. F., Z. Dedej, R. Gottlieb, H. Li, D. N. Thomas, M. El-Absawi, A. El-Naggar, M. El-Gharabawi & U. Sommer, 2002. Spatial and temporal distribution of Trichodesmium spp. in the stratified Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 239:241–250 and interannual variability.Progress in Oceanography 46: 187–204.Google Scholar
  60. Rasheed M., M. I. Badran, C. Richter, M. Huettel, 2002. Effects of reef framework and bottom sediment on nutrient enríchment in a coral reef of the Gulf of Aqaba, Red Sea. Marine Ecology Progress series 239: 277–285.Google Scholar
  61. Raven J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Canadian Bulletin Fisharies and Aquatic Sciences 214: 1–70.Google Scholar
  62. Reiss, Z. & L. Hottinger, 1984. The Gulf of Aqaba (Eilat) - Ecological Micropaleontology. Springer, Berlin, p. 357.Google Scholar
  63. Sakka, A., L. Legendre, M. Gosselin & B. Delesalle, 2000. Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Marine Ecology Progress series 197: 1–17.Google Scholar
  64. Smayda, T. J., 1980. Phytoplankton species succession. In: Morris I (eds) The Physiological Ecology of Phytoplankton. Blackwell, Malden (MA), USA, pp. 493–570.Google Scholar
  65. Sommer, U., 2000. Scarcity of medium-sized phytoplankton in the Red Sea explained by strong bottom-up and weak top-down control. Marine Ecology Progress series 197: 19–25.Google Scholar
  66. Sommer, U., U. G. Berninger, R. Böttger-Schnack, A. Cornils, W. Hagen, T. Hansen, T. Al-Najjar, A.F. Post, S. B. Schnack-Schiel, H. Stibor, D. Stübing & S. Wickham, 2002. Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Marine Ecology Progress series 239:251–261.Google Scholar
  67. Strickland, J. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analyses. 2nd ed. Bulletin of Fisheries Research Board of Canada 167: 1–310.Google Scholar
  68. Tanaka, T., F. Rassoulzadegan & T. F. Thingstad, 2003. Measurements of phosphate affinity constants and phosphorus release rates from the microbial food web in Villefranche Bay. Limnology and Oceanography. 48: 1150–1160.Google Scholar
  69. Tangen, K. & T. Björnland, 1981. Observations on pigments and morphology of Gyrodinium aureolum Hulburt, a marine dinoflagellate containing 19-hexanoiloxyfucoxanthin as the main carotenoid. Journal of Plankton Research 3: 389–401.CrossRefGoogle Scholar
  70. Tester, P.A, M.E Geesey, C Guo, H.W Pearl & D.F Millie, (1995) Evaluating phytoplankton dynamics in the Newport River estuary (North Carolina, USA) by HPLC-derived pigment proliles. Marine Ecology Progress series. 124: 237–245.Google Scholar
  71. UNESCO, 1981. International oceanographic tables. Report No. 36, UNESCO, Paris.Google Scholar
  72. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt International Vereinig Limnology 9: 1–38.Google Scholar
  73. Venrick, E. L., 1993. Phytoplankton seasonality in the Central North Pacific: The endless summer reconsidered. Limnology and Oceanography 38: 1135–1149.Google Scholar
  74. Wahbah, M. I. & M. B. Zughul, 2001. Temporal distribution of chlorophyll a, suspended matter, and the vertical flux of particles in Aqaba (Jordan). Hydrobiologia 459: 1–3.CrossRefGoogle Scholar
  75. Wilhelm, C, I Rudolph & W Renner, 1991. A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage- a study from lake Meerfelder Maar (Eifel, Germany). Arch. Hydrobiologia. 123: 21–35.Google Scholar
  76. Winter, A., Z. Reiss & B. Luz, 1976. Distribution of living coccolithophore assemblages in the Gulf of Elat (Aqaba). Marine Micropaleontology 4: 197–223.CrossRefGoogle Scholar
  77. Woelk, S. & D. Quadfasel, 1996. Renewal of deep water in the Red Sea during 1982–1987. Journal of Geophysical Research 101, 18,155–18,165.Google Scholar
  78. Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjoernland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress series 77: 183–196.Google Scholar
  79. Wright, S. W., D. P. Thomas, H. J. Marchant, H. W. Higgins, M. D. Mackey & D. J. Mackey, 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Marine Ecology Progress series 144: 285–298.Google Scholar
  80. Yahel, G., A. F. Post & K. Fabricius, D. Marie, D. Vaulot & A. Genin, 1998. Phytoplankton distribution and grazing near coral reefs. Limnology and Oceanography 43: 551–563.Google Scholar
  81. Yahel, G., J. H. Sharp, D. Marie, C. Häse & A. Genin, 2003. In situ feeding and element removal in the symbiont bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography 48: 141–149.CrossRefGoogle Scholar
  82. Zimmer, C., 2001. The partitioning of the Red Sea. Science 293: 627–628.PubMedCrossRefGoogle Scholar
  83. Zohary, T. & R. D. Robarts, 1998. Experimental study of microbial P limitation in the eastern Medditeranean. Limnology and oceanography 43: 387–395.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Tariq Al-Najjar
    • 1
  • Mohammad I. Badran
    • 1
  • Claudio Richter
    • 2
  • Michael Meyerhoefer
    • 3
  • Ulrich Sommer
    • 3
  1. 1.Marine Science StationThe University of Jordan/Yarmouk UniversityAqabaJordan
  2. 2.Zentrum für Marine TropenökologieBremenGermany
  3. 3.Institut für MeereskundeKieGermany

Personalised recommendations