Hydrobiologia

, Volume 576, Issue 1, pp 3–13 | Cite as

Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments

  • Rahel Elevi Bardavid
  • Danny Ionescu
  • Aharon Oren
  • Fred A. Rainey
  • Becky J. Hollen
  • Danielle R. Bagaley
  • Alanna M. Small
  • Christopher McKay
Saline Water

Abstract

Salinibacter is a genus of red, extremely halophilic Bacteria. Thus far the genus is represented by a single species, Salinibacter ruber, strains of which have been isolated from saltern crystallizer ponds in Spain and on the Balearic Islands. Both with respect to its growth conditions and its physiology, Salinibacter resembles the halophilic Archaea of the order Halobacteriales. We have designed selective enrichment and isolation techniques to obtain Salinibacter and related red extremely halophilic Bacteria from different hypersaline environments, based on their resistance to anisomycin and bacitracin, two antibiotics that are potent inhibitors of the halophilic Archaea. Using direct plating on media containing bacitracin, we found Salinibacter-like organisms in numbers between 1.4×103 and 1.4×106ml−1 in brines collected from the crystallizer ponds of the salterns in Eilat, Israel, being equivalent to 1.8–18% of the total colony counts obtained on identical media without bacitracin. A number of strains from Eilat were subjected to a preliminary characterization, and they proved similar to the type strain of S. ruber. We also report here the isolation and molecular detection of Salinibacter-like organisms from an evaporite crust on the bottom of salt pools at the Badwater site in Death Valley, CA. These isolates and environmental 16S rRNA gene sequences differ in a number of properties from S. ruber, and they may represent a new species of Salinibacter or a new related genus.

Keywords

Salinibacter Salterns Death Valley Hypersaline Enrichment Anisomycin Bacitracin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antón, J., E. Llobet-Brossa, F. Rodríguez-Valera & R. Amann, 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environmental Microbiology 1: 517–523.PubMedCrossRefGoogle Scholar
  2. Antón, J., R. Rosselló-Mora, F. Rodríguez-Valera & R. Amann, 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Applied and Environmental Microbiology 66: 3052–3057.PubMedCrossRefGoogle Scholar
  3. Antón, J., A. Oren, S. Benlloch, F. Rodríguez-Valera, R. Amann & R. Rosselló-Mora, 2002. Salinibacter ruber gen. nov., sp. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds. International Journal of Systematic and Evolutionary Microbiology 52: 485–491.PubMedGoogle Scholar
  4. Altschul, S.F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.PubMedCrossRefGoogle Scholar
  5. Basinger, G. W. & J. D. Oliver, 1979. Inhibition of Halobacterium cutirubrum lipid biosynthesis by bacitracin. Journal of General Microbiology 111: 423–427.Google Scholar
  6. Christie, W. W., 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Christie W. W. (ed.) Advances in Lipid Methodology, vol. 2 Oily Press. Dundee, 69–111.Google Scholar
  7. Crowley, J. K. & S. J. Hook, 1996. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. Journal of Geophysical Research 101: 643–660.CrossRefGoogle Scholar
  8. Eder, K., 1995. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B 671: 113–131.Google Scholar
  9. Felsenstein, J., 1993. PHYLIP (phylogenetic inference package) version 3.5.1. Seattle: Department of Genetics, University of Washington.Google Scholar
  10. Gonzalez, C., C. Gutierrez & C. Ramirez, 1978. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Canadian Journal of Microbiology 24: 710–715.PubMedCrossRefGoogle Scholar
  11. Huang, C. -Y., J. -L. Garcia, B. K. C. Patel, J.-L. Cayol, L. Baresi & R. A. Mah, 2000. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. International Journal of Systematic and Evolutionary Microbiology 50: 615–622.PubMedGoogle Scholar
  12. Hunt, C. B., 1975. Death Valley. Geology, Ecology, Archaeology. University of California Press, Berkeley.Google Scholar
  13. Jukes, T. H. & C. R. Cantor, 1969 Evolution of protein molecules. In Munro H. N., (ed.) Mammalian Protein Metabolism. Academic Press, New York: 21–132.Google Scholar
  14. Lutnæs, B. F., A. Oren & S. Liaaen-Jensen, 2002. New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. Journal of Natural Products 65: 1340–1343.PubMedCrossRefGoogle Scholar
  15. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, R. J. Farris, G. Garrity, G. J. Olsen, T. M. Schmidt & J. M. Tiedje, 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Research 29: 173–174.PubMedCrossRefGoogle Scholar
  16. Miller, L. T., 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journal of Clinical Microbiology 16: 584–586.PubMedGoogle Scholar
  17. Moldoveanu, N. & M. Kates, 1989. Effect of bacitracin on growth and phospholipid, glycolipid and bacterioruberin biosynthesis in Halobacterium cutirubrum. Journal of General Microbiology 135: 2504–2508.Google Scholar
  18. Mormile, M. R., M. A. Biesen, M. C. Gutirrrez, A. Ventosa, J. B. Pavlovich, T. C. Onstott & J. K. Fredrickson, 2003. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environmental Microbiology 5: 1094–1102.PubMedCrossRefGoogle Scholar
  19. Oren, A., 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiology Ecology 73: 41–48.CrossRefGoogle Scholar
  20. Oren, A., 1992. On the red coloration of saltern crystallizer ponds. International Journal of Salt Lake Research 1: 77–89.CrossRefGoogle Scholar
  21. Oren, A., 2002a. Halophilic Microorganisms and their Environments. Kluwer Scientific Publishers, Dordrecht.Google Scholar
  22. Oren, A., 2002b. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiology Ecology 39: 1–7.CrossRefGoogle Scholar
  23. Oren, A., 2002c. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology 28: 56–63.CrossRefGoogle Scholar
  24. Oren, A., 2004. The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In Dworkin M., S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.17, 31 August 2004. Springer, New York, http://link.springer-ny.com/link/service/books/10125/
  25. Oren, A. & L. Mana, 2003. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiology Letters 223: 83–87.PubMedCrossRefGoogle Scholar
  26. Oren, A. & F. Rodríguez-Valera, 2001. The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiology Ecology 36: 123–130.PubMedGoogle Scholar
  27. Oren, A., F. Rodríguez-Valera, J. Antón, S. Benlloch, R. Rosselló-Mora, R. Amann, J. Coleman & N. J. Russell, 2004. Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds. In Ventosa A. (ed.) Halophilic Microorganisms. Springer, Berlin, 63–76.Google Scholar
  28. Pecher, T. & A. Böck, 1981. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS Microbiology Letters 10: 295–297.CrossRefGoogle Scholar
  29. Rainey, F. A., N. Ward-Rainey, R. M. Kroppenstedt & E. Stackebrandt, 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. International Journal of Systematic Bacteriology 46: 1088–1092.PubMedCrossRefGoogle Scholar
  30. Rosselló-Mora, R., N. Lee, J. Antón & M. Wagner, 2003. Substrate update in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7: 409–413.PubMedCrossRefGoogle Scholar
  31. Wieland, F., J. Lechner & M. Sumper, 1982. The cell wall glycoprotein of Halobacterium: structural, functional and biosynthetic aspects. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, Originale C 3: 161–170.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rahel Elevi Bardavid
    • 1
  • Danny Ionescu
    • 1
  • Aharon Oren
    • 1
  • Fred A. Rainey
    • 2
  • Becky J. Hollen
    • 2
  • Danielle R. Bagaley
    • 2
  • Alanna M. Small
    • 2
  • Christopher McKay
    • 3
  1. 1.The Institute of Life Sciences, and The Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  3. 3.Space Science DivisionNASA-Ames Research CenterMoffett FieldUSA

Personalised recommendations