, Volume 549, Issue 1, pp 287–295 | Cite as

Fluctuating Selection, Egg Banks and Population Genetic Structure in Cyclically Parthenogenetic Species

  • Lars M. BergEmail author
Primary Research Paper


Associations between neutral genetic markers and genes under selection have been suggested to explain the population genetic structure of neutral genes in cyclically parthenogenetic freshwater invertebrates. A simulation model was constructed in order to analyse the extrapolated consequences of observed fluctuations in genotype frequencies in Daphnia, in the presence of egg banks. When of sufficient depth and magnitude, egg banks in combination with fluctuating selection were shown to maintain genetic variation within populations indefinitely. The level of equilibrium diversity increased with the depth and magnitude of the banks, and with intensity of selection. The same threshold was responsible for genetic differentiation between populations, which was independent of migration rate, and which was attained very rapidly following initial Hardy–Weinberg equilibrium. In the absence of selection, egg banks increased the effective size of local populations, thereby decreasing genetic differentiation at migration-drift equilibrium.

These results suggest that egg banks are crucial to the genetic structure in the presence of fluctuating selective pressures, but more data are needed if this knowledge is to be used in an improved general understanding of the genetic structure of cyclically parthenogenetic species.


cyclical parthenogenesis fluctuating selection linkage disequilibrium egg bank genetic structure Daphnia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, L. M., 2001. Genetic disequilibria and the interpretation of population genetic structure in Daphnia. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 668, UppsalaGoogle Scholar
  2. Berg, L. M., Lascoux, M. 2000Neutral genetic differentiation in an island model with cyclical parthenogenesisJournal of Evolutionary Biology13488494CrossRefGoogle Scholar
  3. Boileau, M. G., Hebert, P. D. N., Schwartz, S. S. 1992Non-equilibrium gene frequency divergence: persistent founder effects in natural populationsJournal of Evolutionary Biology52539CrossRefGoogle Scholar
  4. Brendonck, L., Meester, L. 2003Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sedimentHydrobiologia4916584CrossRefGoogle Scholar
  5. Cáceres, C. E. 1998Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggsEcology7916991710Google Scholar
  6. Cáceres, C. E., Hairston, N. G.,Jr 1998Benthic–pelagic coupling in crustaceans: the role of the benthosArchiv für Hydrobiologie Special Issue Advances in Limnology52163174Google Scholar
  7. Charlesworth, B., Morgan, M. T., Charlesworth, D. 1993The effect of deleterious mutations on neutral molecular variationGenetics13412891303PubMedGoogle Scholar
  8. Cousyn, C., Meester, L., Colbourne, J. K., Brendonck, L., Verschuren, D., Volckaert, F. 2001Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changesProceedings of the National Academy of Science USA9862566260CrossRefGoogle Scholar
  9. Meester, L. 1996Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processesÉcoscience3385399Google Scholar
  10. Meester, L., Gómez, A., Okamura, B., Schwenk, K. 2002The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organismsActa Oecologica23121135CrossRefGoogle Scholar
  11. Stasio, B. T.,Jr. 1990The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton communityLimnology and Oceanography3510791090Google Scholar
  12. Ellner, S., Hairston, N. G.,Jr 1994Role of overlapping generations in maintaining genetic variation in a fluctuating environmentThe American Naturalist143403417CrossRefGoogle Scholar
  13. Ellner, S., Sasaki, A. 1996Patterns of polymorphism maintained by fluctuating selection with overlapping generationsTheoretical Population Biology503165CrossRefPubMedGoogle Scholar
  14. Gilbert, J. J. 1974Dormancy in rotifersTransactions of the American Microscopical Society93490513Google Scholar
  15. Gillespie, J. H. 2000Genetic drift in an infinite population: The pseudohitchhiking modelGenetics155909919PubMedGoogle Scholar
  16. Gómez, A., Carvalho, G. R. 2000Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populationsMolecular Ecology9203214CrossRefPubMedGoogle Scholar
  17. Hairston, N. G.,Jr., Kearns, C. M. 2002Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixingIntegrative and Comparative Biology42481491Google Scholar
  18. Hairston, N. G.,Jr., Brunt, R. A., Kearns, C. M., Engstrom, D.␣R. 1995Age and survivorship of diapausing eggs in a sediment egg bankEcology7617061711Google Scholar
  19. Hebert, P. D. N. 1974aEnzyme variability in natural populations of Daphnia magna. II. Genotypic frequencies in permanent populationsGenetics77323334Google Scholar
  20. Hebert, P. D. N. 1974bEnzyme variability in natural populations of Daphnia magna. III. Genotypic frequencies in intermittent populationsGenetics77335341Google Scholar
  21. Hebert, P. D. N. 1987Genetics of DaphniaPeters, H.Bernardi, R. eds. DaphniaIstituto Italiano di IdrobiologiaPallanza,439460Google Scholar
  22. Hedrick, P. W. 1995Genetic polymorphism in a temporally varying environment: effects of delayed germination or diapauseHeredity75164170Google Scholar
  23. Kaj, I., Krone, S. M., Lascoux, M. 2001Coalescent theory for seed bank modelsJournal of Applied Probability38285300Google Scholar
  24. Kasahara, S., Onbe, T., Kamigaki, M. 1975Calanoid copepod eggs in sea bottom muds. 3. Effects of temperature, salinity, and other factors on the hatching of resting eggs of Tortanus forcipatusMarine Biology313135CrossRefGoogle Scholar
  25. Lynch, M. 1987The consequences of fluctuating selection for isozyme polymorphisms in DaphniaGenetics115657669Google Scholar
  26. Lynch, M., Spitze, K. 1994 Evolutionary genetics of DaphniaRead, L. E. eds. Ecological GeneticsPrinceton University PressPrinceton,109128Google Scholar
  27. Marcus, N. H., Lutz, R., Burnett, W., Cable, P. 1994Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bankLimnology and Oceanography39154158Google Scholar
  28. Moritz, C. 1987A note on the hatching and viability of Ceriodaphnia ephippia collected from lake sedimentHydrobiologia145309314Google Scholar
  29. Mort, M. A., Wolf, H. G. 1985Enzyme variability in large-lake Daphnia populationsHeredity552736Google Scholar
  30. Nei, M. 1987 Molecular Evolutionary GeneticsColumbia University PressNew YorkGoogle Scholar
  31. Pálsson, S. 2001The effects of deleterious mutations in cyclically parthenogenetic organismsJournal of Theoretical Biology208201214CrossRefPubMedGoogle Scholar
  32. Schwartz, S. S., Hebert, P. D. N. 1987Methods for the activation of resting eggs of DaphniaFreshwater Biology17373379Google Scholar
  33. Slatkin, M., Wiehe, T. 1998Genetic hitch-hiking in a subdivided populationGenetical Research71155160CrossRefPubMedGoogle Scholar
  34. Stross, R. G. 1987Memorie dell’Istituto Italiano di Idrobiologia45413437Google Scholar
  35. Uye, S., Kasahara, S., Onbe, T. 1979Calanoid copepod eggs in sea bottom muds. 4. Effects of some environmental factors on the hatching of resting eggsMarine Biology51151156CrossRefGoogle Scholar
  36. Vanoverbeke, J., Meester, L. 1997Among-populational genetic differentiation in the cyclical parthenogen Daphnia magna (Crustacea, Anomopoda) and its relation to geographic distance and clonal diversityHydrobiologia360135142CrossRefGoogle Scholar
  37. Wright, S., 1969. Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. Chicago University Press, ChicagoGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Conservation Biology and Genetics, Evolutionary Biology Centre Uppsala UniversityUppsalaSweden
  2. 2.Swedish Environmental Protection AgencyStockholmSweden

Personalised recommendations