, Volume 549, Issue 1, pp 167–178 | Cite as

Dynamics of Fine Particulate Organic Matter (FPOM) and Macroinvertebrates in Natural and Artificial Leaf Packs

  • Anja HoffmannEmail author
Primary Research Paper


This paper provides data on fine particulate organic matter (FPOM) and macroinvertebrates associated to natural and artificial leaf packs in a small woodland stream (Schlaube, Brandenburg). Macroinvertebrate colonisation and the dynamics of FPOM were studied in oven-dried alder leaf packs, air-dried alder leaf packs and packs with artificial leafshaped substrate exposed in the stream during a 68-day period. The importance of FPOM as a potential food source for macroinvertebrates especially in artificial leaf packs was evaluated. Changes in the quantity as well as in the chemical composition of the accumulating FPOM (>63  and <63 μm) was determined using soluble carbohydrates, proteins and chlorophyll a as parameters of the nutritional quality. Mass loss and the chemical changes of alder leaves during the decompositional process were also described. The loss of soluble carbohydrates due to leaching was more rapid in oven-dried alder leaf packs than in air-dried ones. After 3 days of leaf pack exposure weight loss of oven-dried and air-dried leaf packs was nearly comparable, as the similar decay coefficients, k = 0.0228 (oven-dried leaf packs) and k = 0.0214 (air-dried leaf packs), respectively, show. The amount of FPOM per unit leaf area constantly increased in artificial packs, although it remained below that of alder leaf packs at all sampling dates. The nutritional quality of FPOM <63 μm was constantly greater than that of FPOM >63 μm and decreased in both size-fractions with length of exposure. Referring to leaf area the abundance of macroinvertebrates continually increased in all packs till the end of exposure, whereas the numbers in artificial packs remained below that in alder leaf packs. The taxonomic composition of all treatments was very similar with Gammarus pulex being the most abundant taxon in all packs until day 42, while afterwards the caddis fly genus Hydropsyche gained in importance. The amphipod Gammarus pulex in general did not show a preference for air-dried alder leaf packs compared to oven-dried alder leaf and artificial packs. Corresponding dynamics of macroinvertebrate colonisation and FPOM content in artificial packs support the hypothesis that FPOM functions not only as an important food source for macroinvertebrates including gammarideans but also as a control mechanism of macroinvertebrate abundance in stream habitats. Even if the accumulation of FPOM and drifting macroinvertebrates might be influenced by the same abiotic factor (e.g. by reduction in stream velocity inside the packs) it is quite unlikely that only physical properties caused the invertebrates to stay.


FPOM nutritional quality alder leaves artificial leaf packs macroinvertebrates leaf processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J. D. 1995Stream Ecology. Structure and Function of Running WatersChapman & HallLondonGoogle Scholar
  2. Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C. 1974Chemical Analysis of Ecological MaterialsBlackwellOxfordGoogle Scholar
  3. Anderson, N. H., Sedell, J. R. 1979Detritus processing by macroinvertebrates in stream ecosystemsAnnual Review of Entomology24351377CrossRefGoogle Scholar
  4. Angradi, T. R. 1993Chlorophyll content of seston in a regulated Rocky Mountain river, Idaho, USAHydrobiologia2593946CrossRefGoogle Scholar
  5. Bird, G. A., Kaushik, N. K. 1992Invertebrate colonization and processing of maple leaf litter in a forested and an agricultural reach of a streamHydrobiologia2346577CrossRefGoogle Scholar
  6. Boling, R. H., Goodman, E. D., Sickle, J.A., Zimmer, J.O., Cummins, K.W., Petersen, R. C., Reice, S. R. 1975Toward a model of detritus processing in a woodland streamEcology56141151Google Scholar
  7. Boulton, A. J., Boon, P. I. 1991A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf ?Australian Journal of Marine and Freshwater Research.42143Google Scholar
  8. Bradford, M. M. 1976A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry72248254PubMedGoogle Scholar
  9. Culp, J. M., Walde, S. J., Davies, R. W. 1983Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistributionCanadian Journal Fisheries and Aquatic Science4015681574Google Scholar
  10. Cummins, K. W., Klug, M. J. 1979Feeding ecology of stream invertebratesAnnual Review of Ecology and Systematics10147172CrossRefGoogle Scholar
  11. Fuller, R. L., Mackay, R. J. 1980Feeding ecology of three species of Hydropsyche (Trichoptera: Hydropsychidae) in southern OntarioCanadian Journal of Zoology5822392251Google Scholar
  12. Garden, A., Davies, R. W. 1988Decay rates of autumn and spring leaf litter in a stream and effects on growth of a detritivoreFreshwater Biology19297303Google Scholar
  13. Gerhardt, A. 1992Qualitative and quantitative investigations on the detritus content of the Breitenbach (Eastern Hesse, FRG)Archiv fur Hydrobiologie1243551Google Scholar
  14. Gessner, M., Chauvet, O. E. 1994Importance of stream microfungi in controlling breakdown rates of leaf litterEcology7518071817Google Scholar
  15. Gessner, M., Dobson, O. M. 1993Colonisation of fresh and dried leaf litter by lotic macroinvertebratesArchiv fur Hydrobiologie127141149Google Scholar
  16. Graςa, M. A. S. 1993Patterns and processes in detritus-based stream systemsLimnologica23107114Google Scholar
  17. Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., Santos, U. M. 1986Compositions and fluxes of particulate organic material in the Amazon RiverLimnology and Oceanography31717738Google Scholar
  18. Kostalos, M., Seymour, R. L. 1976Role of microbial enriched detritus in the nutrition of Gammarus minus (Amphipoda)Oikos27512516Google Scholar
  19. Lush, D. L., Hynes, H. B. N. 1973The formation of particles in freshwater leachates of dead leaseLimnology and Oceanography18968977Google Scholar
  20. Mann, K. H. 1988Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystemsLimnology and Oceanography33910930Google Scholar
  21. Mühlenberg, M. 1989Freilandökologie.- 2.Aufl.Quelle Meyer (UTB)Heidelberg, WiesbadenGoogle Scholar
  22. Mutch, R. A., Steedman, R. J., Berté, S. B., Pritchard, G. 1983Leaf breakdown in a mountain stream: a comparison of methodsArchiv for Hydrobiologie9789108Google Scholar
  23. Naiman, R. J., Sedell, J. R. 1979Characterization of particulate organic matter transported by some cascade mountain streamsJournal of Fisheries Research Board of Canada361731Google Scholar
  24. Neumann P., 1995. Untersuchungen zur Nahrungsqualität von benthischem feinpartikulärem Detritus für Feinpartikelsammler unter dem Aspekt seiner biochemischen Zusammensetzung im Breitenbach. Dissertation Universität Marburg, 135 ppGoogle Scholar
  25. Olson, J. S. 1963Energy storage and the balance of decomposers in ecological systemsEcology44322332Google Scholar
  26. Peters, G. T., Benfield, E. F., Webster, J. R. 1989Chemical composition and microbial activity of seston in a southern Appalachian headwater streamJournal of North American Benthological Society87484Google Scholar
  27. Pozo, J. 1993Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain) I. Chemical changesArchiv fur Hydrobiologie127299317Google Scholar
  28. Rausch, T. 1981The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass. I. Comparision of methods for extracting protein- Hydrobiologia78237251Google Scholar
  29. Richardson, J.S. 1992Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a montane streamFreshwater Biology27169176Google Scholar
  30. Rossi, L. 1985Interactions between invertebrates and microfungi in freswater ecosystemsOikos44175184Google Scholar
  31. Schröder, P., Streit, B. 1983Ernährungstypen einer Fließwasserzoozönose (Krebsbach bei Eigeltingen/Bodenseegebiet) unter Berücksichtigung saisoneller und kleinräumiger ÄnderungenArchiv fur Hydrobiologie Suppl6683108Google Scholar
  32. Sedell, J. R., Naiman, R. J., Cummins, K. W., Minshall, G. W., Vannote, R. L. 1978Transport of particulate organic material in streams as a function of physical processesVerhein Internatational Verein Limnologie2013661375Google Scholar
  33. Short, R. A., Maslin, P. E. 1977Processing of leaf litter by a stream detritivore: effect of nutrient availability to collectorsEcology58935938Google Scholar
  34. Smith, J., Lake, P. S. 1993The breakdown of buried and surface-placed leaf litter in an upland streamHydrobiologia271141148Google Scholar
  35. Sutcliffe, D. W., Carrick, T. R., Willoughby, L. G. 1981Effects of diet, body size, age and temperature on growth rates in the amphipod Gammarus pulexFreshwater Biology11183214Google Scholar
  36. Townsend, C. R., Hildrew, A. G. 1975Field experiments on the drifting, colonization and continuous redistribution of stream benthosJournal of Animal Ecology45759772Google Scholar
  37. Voshell, J. R., Parker, C. R. 1985Quantity and quality of seston in an impounded and free-flowing river in Virginia, USAHydrobiologia122271280CrossRefGoogle Scholar
  38. Wallace, J. B., Cuffney, T. F., Webster, J. R., Lugthart, G. J., Chung, K., Goldowitz, B. S. 1991Export of fine particles from headwater streams: effects of season, extreme discharges and invertebrate manipulationLimnology and Oceanography36670682Google Scholar
  39. Wallace, J. B., Ross, D. H., Meyer, J. L. 1982Seston and dissolved organic carbon dynamics in a southern Appalachian streamEcology63824838Google Scholar
  40. Ward, G. M., Ward, A. K., Dahm, C. N., Aumen, N. G. 1994Origin and formation of organic and inorganic particles in aquatic systemsWotton, R. S. eds. The Biology of Particles in Aquatic Systems. 2.Aufl.CRC pressBoca Raton (Florida)Google Scholar
  41. Waters, T. F. 1972The drift of stream insectsAnnual Review of Entomology17253272CrossRefGoogle Scholar
  42. Webster, J. R., Benfield, E. F. 1986Vascular plant breakdown in freshwater ecosystemsAnnual Review of Ecology and Systematics17567594CrossRefGoogle Scholar
  43. Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank,  J. L., Hutchens, J. J., D’Angelo, D. J. 1999What happens to allochthonous material that falls into streams? A synthesis of new and published information from CoweetaFreshwater Biology41687705CrossRefGoogle Scholar
  44. Winterbourn, M. J. 1978An evaluation of the mesh bag method for studying leaf colonization by stream invertebratesVerhein Internatational Verein Limnologie2015571561Google Scholar
  45. Xiang, J., Schröder, P., Schwörbel, J. 1984Phänologie und Nahrung der Larven von Hydropsyche angustipennis und H. siltalai (Trichoptera, Hydropsychidae) in a lake outletArchiv fur Hydrobiologie66255292Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Chair of Water ConservationBrandenburg University of TechnologyBad SaarowGermany

Personalised recommendations