, Volume 549, Issue 1, pp 79–98 | Cite as

Respiration Rate of Stream Insects Measured in situ Along a Large Altitude Range

  • Stig RostgaardEmail author
  • Dean Jacobsen
Primary Research Paper


Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field conditions in streams from 400 to 3800 m above sea level in tropical Ecuador. Mean active respiration rates of the animals at 3800 m were approximately half of those at 400 m. Trichoptera showed a slightly larger difference in respiration with altitude than Ephemeroptera. Comparative respiration measurements at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q10−value of 1.50. Trichopteran larvae had a slightly stronger temperature response (Q10 of 1.68) than ephemeropterans (Q10 of 1.30). These community Q10-values are considerably lower than the mean value of 2.36 found in single species in the laboratory. The weak community-wide response of respiration to temperature in tropical streams is probably due to full acclimatization of the component species to stable and narrow temperature ranges. Adaptations to the low oxygen availability at high altitude probably consist of a suite of genetic physiological and behavioural features.


respiration rate aquatic insect larvae Q10-value oxygen supply temperature gradient Ecuador 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan J. D., 1995. Stream Ecology, Structure and Function in Running Waters. Chapman and Hall LondonGoogle Scholar
  2. Bales M. T. & R. M. Badcock, 1986. Respiration rates and distribution of caddis larvae in relation to acclimation to temperature. In Proceedings of the 5th International Symposium on Trichoptera, LyonGoogle Scholar
  3. Beamish, F. W. H. 1964Influence of starvation on standard and routine oxygen consumptionTransactions of the American Fisheries Society93103107Google Scholar
  4. Clarke, M. R. B. 1980The reduced major axis of a bivariate sampleBiometrika67441446Google Scholar
  5. Collardeau, C. 1961Influence de la température sur la consommation d’oxygéne de quelques larves de TrichoptéresHydrobiologia18252264CrossRefGoogle Scholar
  6. Dall P. C., 1999. Freshwater Biological Laboratory, University of CopenhagenGoogle Scholar
  7. Dominguez E., M. D. Hubbard & W. L. Peters, 1992. Clave para ninfas adultos de las familias y generos de Ephemeroptera (Insecta) Sudamericanos. Biologia Acuatica 16, La PlataGoogle Scholar
  8. Eckert R., D. Randall & G. Augustine, 1988. Animal Physiology. 3rd edn., W. H. Freeman and Company, New YorkGoogle Scholar
  9. Feldmeth, C. R. 1970The respiratory energetics of two species of stream caddis fly larvae in relation to water flowComparative Biochemistry and Physiology32193202CrossRefPubMedGoogle Scholar
  10. Flint, O. S. 1963Studies on Neotropical caddisflies, I: Rhyacophilidae and Glossosomatidae (Trichoptera)Proceedings of the United States National Museum114454478Google Scholar
  11. Flint, O. S. 1982Studies of Neotropical caddisflies, XXX: larvae of the genera of South American Limnephilidae (Trichoptera)Smithsonian Contributions to Zoology335335Google Scholar
  12. Fox, H. M., Simonds, B. G., Washbourn, R. 1935Metabolic rates of Ephemerid nymphs from swiftly flowing and from still watersThe Journal of Experimental Biology12179184Google Scholar
  13. Genkai-Kato, M., Nozaki Mitsuhashi, H., Kohmatsu, Y., Miyasaka, H., Nakanishi, M. 2000Push-up response of stonefly larvae in low-oxygen conditionsEcological Research15175179CrossRefGoogle Scholar
  14. Golubkov, S. M. , Tiunova, T. M. 1989Dependence of the respiration rate upon oxygen concentration in water for some rheophilous mayfly larvae (Ephemeroptera)Aquatic Insects11147151Google Scholar
  15. Golubkov, S. M., Tiunova, T. M., Kocharina, S. L. 1992Dependence of the respiration rate of aquatic insects upon the oxygen concentration in running and still waterAquatic Insects14137144Google Scholar
  16. Hamburger, K., Dall, P. C. 1990The respiration of common benthic invertebrate species from the shallow littoral zone of Lake Esrom, DenmarkHydrobiologia199117130CrossRefGoogle Scholar
  17. Hemmingsen A. M., 1960. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and the Nordisk Insulinlaboratorium IX (II), CopenhagenGoogle Scholar
  18. Herreid, C. F. 1980Hypoxia in invertebratesComparative Biochemistry and Physiology67A311320Google Scholar
  19. Hildrew, A. G., Edington, J. M. 1979Factors facilitating the coexistence of hydropsychid caddis larvae (Trichoptera) in the same river systemJournal of Animal Ecology48557576Google Scholar
  20. Howell, D. A., Voshell, J. R.,Jr. 1982The effects of body weight and temperature on the metabolic rate of Hydropsyche venularis Banks (Trichooptera: Hydropsychidae)Comparative Biochemistry and Physiology71A401405Google Scholar
  21. Hynes H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press, LiverpoolGoogle Scholar
  22. Illies, J. 1964The invertebrate fauna of the Huallaga, a Peruvian tributary of the Amazon River, from the sources down to Tingo MariaVerhandlungen der Internationalen Vereinigung für theoretische und angewande Limnologie1510771083Google Scholar
  23. Jacobsen, D. 2000Gill size of trichopteran larvae and oxygen supply in streams along a 4000 m altitude gradient of altitudeJournal of the North American Benthological Society19329343Google Scholar
  24. Jacobsen, D. 2003Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian AndesArchiv fur Hydrobiolgie158145167CrossRefGoogle Scholar
  25. Jacobsen, K. D. 1994Growth and energetics of a trichopteran larva feeding on fresh submerged and terrestrial plantsOecologia97412418Google Scholar
  26. Kamler, E. 1969A comparison of the closed-bottle and flowing-water methods for measurement of respiration in aquatic invertebratesPolskie Archiwum Hydrobiologii163149Google Scholar
  27. Knight, A. W., Gaufin, A. G. 1966Oxygen consumption of several species of stoneflies (Plecoptera)Journal of insect Physiology12347355CrossRefGoogle Scholar
  28. Lewis , W. M. Jr., Hamilton, S. K. & Saunders J. F. III, 1995. Rivers of Northern South America. In Cushing, C. E., K. W. Cummings, G. W. Minshall (eds), Ecosystems of the World 22. Elsevier Science, AmsterdamGoogle Scholar
  29. Lighton, J. R. B. 1996Discontinuous gas exchange in insectsAnnual Review of Entomology41309324CrossRefPubMedGoogle Scholar
  30. Merrit R. W. & K.W. Cummins (eds), 1996. An Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt Publishing Company, Dubuque, IowaGoogle Scholar
  31. Nagell, B. 1981Critical oxygen demand in Plecoptera and Ephemeroptera nymphs as determined by two methodsOikos367582Google Scholar
  32. Philipson, G. N. 1976Respiratory behaviour of larvae of four species of the Family Polycentropodidae (Trichoptera)Freshwater Biology6347353Google Scholar
  33. Resh , V. H. & D. M. Rosenberg, 1984. The Ecology of Aquatic Insects. Prager, New YorkGoogle Scholar
  34. Roldán G., 1992. Guía para el Estudio de los Macroinvertebrados Aquaticos del Departamento de Antioquia. Universidad de Antioquia, Fondo Fen Colombia/Colciencias Publicaciones, BogotáGoogle Scholar
  35. Roux, C. 1979The influence of some ecological factors on the metabolism–temperature curve of the larvae of Limnephilus rhombicus (Trichoptera, Limnephilidae)Freshwater Biology9111117Google Scholar
  36. Roux, C., Tachet, H., Bournaud, M., Cellot, B. 1992Stream continuum and metabolic rate in the larvae of five species of Hydropsyche (Trichoptera)Ecography157076Google Scholar
  37. Seltzer, G. O. 1990Recent glacial history and paleoclimate of the peruvian-bolivian AndesQuaternary Science Reviews9137152CrossRefGoogle Scholar
  38. Sláma, K. 1988A new look at insect respirationBiological Bulletin175289300Google Scholar
  39. Sokal , R. R. & Rohlf F. J., 1995. Biometry, 2nd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  40. Spicer, J. I., Gaston, K. J. 1999Amphipod gigantism dictated by oxygen availabilityEcology Letters 19992397403CrossRefGoogle Scholar
  41. Vogel S., 1994. Life in Moving Fluids: The Physical Biology of Flow, 2nd edn. Princeton University Press, New JerseyGoogle Scholar
  42. Ward, J. V., Stanford, J. A. 1982Thermal responses in the evolutionary ecology of aquatic insectsAnnual Review of Entomology2797117CrossRefGoogle Scholar
  43. Wichard, W., Komnick, H. 1974Structure and function of the respiratory epithelium in the tracheal gills of stonefly larvaeJournal of Insect Physiology2023972406CrossRefPubMedGoogle Scholar
  44. Wiggins G. B., 1976. Larvae of the North American caddisfly genera (Trichoptera), 2nd edn. University of Toronto Press, TorontoGoogle Scholar
  45. Wigglesworth , V. B., 1965. The Principles of Insect Physiology, 6th edn. Methuen Co Ltd, LondonGoogle Scholar
  46. Wilhelm, F. M., Lasenby, D. C., Wilhelm, R. M., Plante, R. 1997A new recorder for simultaneously recording the activity and oxygen consumption of small bentic invertebratesCanadian Journal of Fisheries and Aquatic Science5428882893CrossRefGoogle Scholar
  47. Williams D. D. & B. W. Feltmate, 1992. Aquatic Insects. CAB International, Oxon, UK (Chapter 6.4)Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Freshwater Biological LaboratoryHillerødDenmark

Personalised recommendations