Hydrobiologia

, Volume 565, Issue 1, pp 39–58 | Cite as

Trophic Relationships in the Rhine Food Web during Invasion and after Establishment of the Ponto-Caspian Invader Dikerogammarus villosus

  • M. C. van Riel
  • G. van der Velde
  • S. Rajagopal
  • S. Marguillier
  • F. Dehairs
  • A. bij de Vaate
Article

Abstract

The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers. Canalization of the Rhine resulted in a reduction of heterogeneity to two main biotopes: sandy streambeds and riverbanks consisting of groyne stones. Both biotopes are heavily subjected to biological invasions, affecting the rivers food web structure. The Ponto-Caspian amphipods, Chelicorophium curvispinum and Dikerogammarus villosus, have exerted the highest impact on this food web. The filterfeeding C. curvispinum dominated the Rhine food web on the stones in 1998, swamping the stone substrata with mud. However, in 2001 it decreased in numbers, most likely due to top-down regulation caused by increased parasitic and predatory pressure of other more recently invaded Ponto-Caspian species. D. villosus showed a fast population increase after its invasion and particularly influenced the macroinvertebrate community on the stones by predaceous omnivory. This species seemed to have maintained its predatory level after its population established. Effects of these mass invaders on the macroinvertebrate community of sandy streambeds in the Rhine are unclear. Here, low densities of macroinvertebrates were observed with the Asiatic clam, Corbicula fluminea, as most abundant species. Stable isotope values of food webs from the stones and sand in 2001 were similar. Aquatic macrophytes are nearly absent and the food web is fuelled by phytoplankton and particulate organic matter, originating from riparian vegetation as indicated by similar δ13C values. Omnivores, filter-, deposit-, and detritus-feeders are the primary and secondary macroinvertebrate consumers and function as keystone species in transferring energy to higher trophic levels. Invaders comprise 90% of the macroinvertebrate numbers, and can be considered ecosystem engineers determining the functional diversity and food web structure of the Rhine by either bottom-up or top-down regulation.

Keywords

macroinvertebrates invaders ecotopes food web trophic relations stable isotopes Rhine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admiraal, W., Velde, G., Smit, H., Cazemier, W. G. 1993The rivers Rhine and Meuse in the Netherlands: present state and signs of ecological recoveryHydrobiologia26597128Google Scholar
  2. Admiraal, W., Breebaart, L., Tubbing, G. M. J., Zanten, B., Ruijter van Steveninck, E. D., Bijkerk, R. 1994Seasonal variation in composition and production of planktonic communities in the Lower River RhineFreshwater Biology32519531Google Scholar
  3. Bij de Vaate, A., Klink, A. 1995Dikerogammarus villosus Sowinsky (Crustacea: Gammaridae), a new immigrant in the Dutch part of the Lower RhineLauterbornia205154Google Scholar
  4. Bij de Vaate, A., Swarte, M. B. A. 2001Dendrocoelum romanodanubiale in the Rhine delta: first records from The NetherlandsLauterbornia405356Google Scholar
  5. Bij de Vaate, A., Jazdzewski, K., Ketelaars, H. A. M., Gollasch, S., Velde, G. 2002Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in EuropeCanadian Journal of Fisheries and Aquatic Sciences5911591174CrossRefGoogle Scholar
  6. Bij de Vaate, A. 2003. Degradation and Recovery of the Freshwater Fauna in the Lower Sections of the Rivers Rhine and Meuse. PhD Thesis, University of Wageningen, WageningenGoogle Scholar
  7. Bij de Vaate, A., Breukel, R., Velde, G. 2006Long-term developments in ecological rehabilitation of the main distributaries in the Rhine Delta: fish and macroinvertebratesHydrobiologia565229242CrossRefGoogle Scholar
  8. Cabana, G., Rasmussen, J. B. 1996Comparison of aquatic food chains using nitrogen isotopesEcology931084410847Google Scholar
  9. Crooks, J. A. 2002Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineersOikos97153166CrossRefGoogle Scholar
  10. Hartog, C., Brink, F. W. B., Velde, G. 1992Why was the invasion of Corophium curvispinum and Corbicula species so successful?Journal of Natural History2611211129Google Scholar
  11. DeNiro, M. J., Epstein, S. 1978Influence of the diet on the distribution of the carbon isotopes in animalsGeochimica et Cosmochimica Acta42495506CrossRefGoogle Scholar
  12. DeNiro, M. J., Epstein, S. 1981Influence of the diet on the distribution of the nitrogen isotopes in animalsGeochimica et Cosmochimica Acta45341351CrossRefGoogle Scholar
  13. Dick, J. T. A., Montgomery, I., Elwood, R. W. 1993Replacement of the indigenous amphipod Gammarus duebeni celticus by the introduced G. pulex: differential cannibalism and mutual predationJournal of Animal Ecology627988Google Scholar
  14. Dick, J. T. A., Platvoet, D., Kelly, D. W. 2002Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda)Canadian Journal of Fisheries and Aquatic Sciences5910781084CrossRefGoogle Scholar
  15. Fahnenstiel, G. L., Lang, T. L., Bridgeman, G. A., McCormick,  M. J., Nalepa, T. F. 1995Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonizationJournal of Great Lakes Research21465475Google Scholar
  16. Gearing, J. N. 1991

    The study of diet and trophic relationships through natural abundance 13C

    Coleman, D. C.Fry, B. eds. Carbon Isotope TechniquesAcademic PressSan Diego201218
    Google Scholar
  17. Haas, G., Brunke, M., Streit, B. 2002

    Fast turnover in dominance of exotic species in the Rhine River determines biodiversity and ecosystem function: an affair between amphipods and mussels

    Leppäkoski, E.Gollasch, S. S.Olenin, S. eds. Invasive Aquatic Species of Europe: Distribution, Impacts and ManagementKluwer Academic PublishersDordrecht426432
    Google Scholar
  18. Hansson, S., Hobbie, J. E., Elmgren, R., Larsson, U., Fry, B., Hohansson, S. 1997The stable nitrogen ratio as a marker of food-web interactions and fish migrationEcology7822492257CrossRefGoogle Scholar
  19. Hobson, K. A., Welch, H. E. 1992Determination of trophic relationships within a high arctic food web using δ13C and δ15N analysisMarine Ecology Progress Series84918Google Scholar
  20. Hobson, K. A., Schell, D., Renouf, D., Noseworthy, E. 1996Stable-carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammalsCanadian Journal of Fisheries and Aquatic Sciences53528533CrossRefGoogle Scholar
  21. Hobson, K. A., Sease, J. L., Merrick, R. L., Piatt, J. F. 1997Investigating trophic relationships of Pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbonMarine Mammal Sciences13114132Google Scholar
  22. Huryn, A. D., Riley, R. H., Young, R. G., Arbuckle, C. J., Peacock,  K. 2002Natural-abundance stable C and N isotopes indicate weak upstream-downstream linkage of food webs in a grassland riverArchiv für Hydrobiologie153177196Google Scholar
  23. Jantz B., 1996. Wachstum, Reproduction, Populationsentwicklung und Beeinträchtigung der Zebramuschel (Dreissena polymorpha) in einem grossen Fliessgewässer, dem Rhein. PhD Thesis, University of Köln, KölnGoogle Scholar
  24. Kelleher, B., Bergers, P. J. M., Brink, F. W. B., Giller, P. S., Velde, G., bij de Vaate, A. 1998Effects of exotic amphipod invasions on fish diet in the Lower RhineArchiv für Hydrobiologie143363382Google Scholar
  25. Kroopnick, P. 1974The dissolved O2–CO213C system in the eastern equatorial PacificDeep Sea Research21211227Google Scholar
  26. Marguillier S., 1998. Stable Isotopes Ratios and Food Web Structure of Aquatic Ecosystems. PhD Thesis, Vrije Universiteit Brussel, BrusselsGoogle Scholar
  27. Marguillier, S., Dehairs, F., Velde, G., Kelleher, B., Rajagopal,  S. 1998

    Initial results on the trophic relationships based on Corophium curvispinum in the Rhine traced by stable isotopes

    Nienhuis, P. H.Leuven, R. S. W. E.Ragas,  A. M. J. eds. New Concepts for Sustainable Management of River BasinsBackhuys PublishersLeiden:171177
    Google Scholar
  28. McClelland, J. W., Valiela, I., Michener, R. H. 1997Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watershedsLimnology and Oceanography42930937CrossRefGoogle Scholar
  29. Minagawa, M., Wada, E. 1984Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal ageGeochimica et Cosmochimica Acta4811351140CrossRefGoogle Scholar
  30. Mook, W. G., Tan, F. C. 1991

    Stable carbon isotopes in rivers and estuaries

    Degens, E. T.Kempe, S.Richey, J. E. eds. Biochemistry of Major World RiversJ. Wiley and Sons LtdChicester:245264
    Google Scholar
  31. Nichols, K. H., Hopkins, G. J. 1993Recent changes in Lake Erie (north shore) phytoplankton: cumulative effects of phosphorus loading reductions and the zebra mussel introductionJournal of Great Lakes Research19637646CrossRefGoogle Scholar
  32. Nijssen, H. & S. J. De Groot, 1987. De vissen van Nederland. Natuurhistorische bibliotheek 43. Koninklijke Nederlandse Natuurhistorische Vereniging, Hoogwoud (in Dutch)Google Scholar
  33. Peterson, B. J., Fry, B. 1987Stable isotopes in ecosystem studiesAnnual Review of Ecology and Systematics18293320CrossRefGoogle Scholar
  34. Rajagopal, S., Velde, G., Paffen, B. G. P., Brink, F. W. B., bij Vaate, A. 1999Life history and reproductive biology of the invasive amphipod Corophium curvispinum (Crustacea: Amphipoda) in the Lower RhineArchiv für Hydrobiologie144305325Google Scholar
  35. Ricciardi, A. 2001Facilitate interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes?Canadian Journal of Fisheries and Aquatic Siences5825132525CrossRefGoogle Scholar
  36. Thorp, J. H., Delong, M. D., Greenwood, K., Casper, A. F. 1998Isotopic analysis of three food web theories in constricted and floodplain regions of a large riverOecologia117551563CrossRefGoogle Scholar
  37. Tieszen, L., Boutton, T. W., Tesdahl, K. G., Slade, N. H. 1983Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of dietOecologia573237CrossRefGoogle Scholar
  38. Brink, F. W. B., Velde, G., bij de Vaate, A. 1991Amphipod invasion on the RhineNature352576CrossRefGoogle Scholar
  39. Riel, M. C., Velde, G., bij Vaate, A. 2003Pomphorhynchus spec. (Acanthocephala) uses the invasive amphipod Chelicorophium curvispinum (G. O. Sars, (1895) as an intermediate host in the River RhineCrustaceana76241247CrossRefGoogle Scholar
  40. Van Riel, M.C., G. van der Velde & A. bij de Vaate, 2004. Alien amphipod invasions in the river Rhine due to river connectivity: a case of competition and mutual predation. In Douben, N. & A. G. Van Os (eds), Proceedings NCR-days (2003); Dealing With Floods Within Constraints. NCR-publication 24-(2004). Netherlands Centre for River Studies, Delft: 51–53Google Scholar
  41. Velde, G., Urk, G., Brink, F. W. B., Colijn, F., Bruggeman, W. A., Leuven, R. S. E. W. 1990

    Rein Rijnwater, een sleutelfactor in chemisch oecosysteemherstel

    Hekstra, G. P.van, F. J. M. eds. Flora en Fauna Chemisch Onder DrukPudocWageningen:231266
    Google Scholar
  42. Velde, G., Rajagopal, S., Brink, F. W. B., Kelleher, B., Paffen, B. G. P., Kempers, A. J., bij de Vaate, A. 1998

    Ecological impact of an exotic amphipod invasion in the River Rhine

    Nienhuis, P. H.Leuven, R. S. E. W.Ragas, A. M. J. eds. New Concepts for Sustainable Management of River BasinsBackhuys PublishersLeiden:159169
    Google Scholar
  43. Velde, G., Rajagopal, S., Kelleher, B., Muskó, I. B., de Vaate, A. 2000Ecological impact of crustacean invaders: general considerations and examples from the Rhine RiverCrustacean Issues12333Google Scholar
  44. Velde, G., Nagelkerken, I., Rajagopal, S., bij de Vaate, A. 2002

    Invasions by alien species in inland freshwater bodies in Western Europe: The Rhine Delta

    Leppäkoski, E.Gollasch, S.Olenin, S. eds. Invasive Aquatic Species of Europe: Distribution, Impacts and ManagementKluwer Academic PublishersDordrecht:360372
    Google Scholar
  45. Van der Velde G., S. Rajagopal, M. Kuyper-Kollenaar, A. bij de Vaate, D. W. Thieltges & H. J. MacIsaac, 2006. Biological invasions – concepts to understand and predict a global threat. In Bobbink R., B. Beltman, J. T. A. Verhoeven & D. F. Whigham (eds), Wetlands as a natural resource. Volume 2. Wetlands: Functioning, Biodiversity, Conservation and Restoration. Ecological Studies 191. Springer Verlag Dordrecht (in press)Google Scholar
  46. Vander Zanden, M. J., Rasmussen, J. B. 1999Primary consumer δ13C and δ15N and the trophic position of aquatic consumersEcology8013951404Google Scholar
  47. Vitousek, P. M. 1990Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studiesOikos57713Google Scholar
  48. Wijnhoven, S., Riel, M. C., Velde, G. 2003Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the waterAquatic Ecology37151158CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. C. van Riel
    • 1
    • 4
  • G. van der Velde
    • 1
    • 4
  • S. Rajagopal
    • 1
    • 4
  • S. Marguillier
    • 2
  • F. Dehairs
    • 2
  • A. bij de Vaate
    • 3
    • 4
  1. 1.Department of Animal Ecology and Ecophysiology, Section Aquatic Animal Ecology, Institute for Wetland and Water ResearchRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Analytical ChemistryVrije Universiteit BrusselBrusselsBelgium
  3. 3.Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Waste Water TreatmentLelystadThe Netherlands
  4. 4.Member of Netherlands Centre for River StudiesDelftThe Netherlands

Personalised recommendations