Advertisement

Hydrobiologia

, Volume 549, Issue 1, pp 23–32 | Cite as

On the Importance of Water Depth, Macrophytes and Fish in Wetland Picocyanobacteria Regulation

  • David G. AngelerEmail author
  • Salvador Sánchez-Carrillo
  • Maria A. Rodrigo
  • Olga Viedma
  • Miguel Alvarez-Cobelas
Primary Research Paper

Abstract

Current paradigms contend abiotic regulation of wetland biota most important, although recent studies show that biotic configuration can play an important role in wetland functioning within the constraints set by abiotic forces. Picocyanobacteria (PC) – although little studied in wetlands – may prove promising candidates for determining the response to experimental manipulation of important physical and biological components of wetland ecosystems (water depth, vegetation, fish) in the short term, because of their fast growth and high reproduction, and thus to test for the importance of biotic or abiotic regulation of PC in wetlands. In this study, the densities of the dominant fish species (Cyprinus carpio, Lepomis gibbosus and Gambusia holbrooki), and submerged (charophytes) and emergent (Cladium mariscus) macrophytes were manipulated in enclosures that were installed in deeper (1.0 m) and in shallower (0.4 m) zones of the Spanish National Park, Las Tablas de Daimiel. Principal component analyses showed that the manipulation of biotic elements brought about significant differences in the limnological environment, but PC (chiefly Cyanobium sp.) abundances were relatively unresponsive to the biota-mediated effects. Instead we observed consistently higher PC abundances in all deeper site treatments compared with the shallower site treatments. Generalised linear models suggested that water depth has overridden any biota-mediated regulation of PC. Although the ultimate cause for PC regulation could not be revealed, results indicate that water depth may strongly mediate PC abundances in wetlands. Furthermore the marginal effect of biota-mediated effects, suggests PC being regulated to a great extent by abiotic forces during our study, thereby matching current paradigms of wetland functioning.

Keywords

wetlands Cyanobium-type picocyanobacteria water depth biotic and abiotic regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Cobelas, M., Cirujano, S. 1996Las Tablas de Daimiel. Ecología Acuática y SociedadMinisterio de MedioambienteMadridGoogle Scholar
  2. Angeler, D. G., Alvarez-Cobelas, M., Rojo, C., Sánchez-Carrillo, S. 2000The significance of water inputs to plankton biomass and trophic relationships in a semiarid freshwater wetland (central Spain)Journal of Plankton Research2220752093CrossRefGoogle Scholar
  3. Angeler, D. G., Alvarez-Cobelas, M., Sánchez-Carrillo, S., Rodrigo, M. A. 2002aAssessment of exotic fish impacts on water quality and zooplankton in a degraded semiarid floodplain wetlandAquatic Sciences647686CrossRefGoogle Scholar
  4. Angeler, D. G., Rodrigo, M. A., Sánchez-Carrillo, S., Alvarez-Cobelas,  M. 2002bEffects of hydrologically confined fish on bacterioplankton and autotrophic picoplankton in a semiarid marshAquatic Microbial Ecology29307312Google Scholar
  5. Angeler, D. G., Chow-Fraser, P., Hanson, M. A., Sánchez-Carrillo, S., Zimmer, K. D. 2003aBiomanipulation: a useful tool for freshwater wetland mitigation?Freshwater Biology4822032213CrossRefGoogle Scholar
  6. Angeler, D. G., Sánchez-Carrillo, S., Alvarez-Cobelas, M., Cirujano,  S., Medina, L. 2003bExotic crayfish activity and its effects on water quality: preliminary implications for the alternative stable equilibria in Mediterranean wetlandsJournal of Mediterranean Ecology41321Google Scholar
  7. Angeler, D. G., Rodrigo, M. A. 2004Ramp disturbance – ramp response: a simple model for wetland disturbance ecologyMarine and Freshwater Research553337CrossRefGoogle Scholar
  8. Bell, T., Kalff, J. 2001The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depthLimnology and Oceanography4612431248Google Scholar
  9. Callieri, C., Morabito, G., Huot, Y., Neale, P. J., Litchman, E. 2001Photosynthetic response of pico- and nano-planktonic algae to UVB, UVA and PAR in a high mountain lakeAquatic Sciences63286293Google Scholar
  10. Keddy, P. 2000Wetland Ecology: Principles and ConservationCambridge University PressCambridgeGoogle Scholar
  11. Komarek, J. 1998Towards a combined approach for the taxonomy and species delimitation of picoplanktonic cyanoprokaryotesAlgological Studies83377401Google Scholar
  12. MacIsaac, E. A., Stockner, J. G. 1993Enumeration of phototrophic picoplankton by autofluorescence microscopyKemp, P. F.,Sherr, B. F.Sherr, E. B.Cole, J. J. eds. Handbook of Methods in Aquatic Microbial EcologyLewis PublishersBoca Raton187197Google Scholar
  13. Mitsch, W. J., Gosselink, J. G. 2000Wetlands3Wiley and sonsNew YorkGoogle Scholar
  14. Ortega-Mayagoitia, E., Rodrigo, M. A., Rojo, C., Alvarez-Cobelas, M. 2002aPicoplankton dynamics in a hypertrophic semiarid wetlandWetlands22575587Google Scholar
  15. Ortega-Mayagoitia, E., Rojo, C., Rodrigo, M. A. 2002bFactors masking the trophic cascade in shallow eutrophic wetlands – evidence from a microcosm studyArchiv für Hydrobiologie1554363Google Scholar
  16. Quintana, X. D., Comín, F. A., Moreno-Amich, R. 2002Biomass-size spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Empordà wetlands, NE Spain)Journal of Plankton Research2411491161CrossRefGoogle Scholar
  17. Rodrigo, M. A., Rojo, C., Alvarez-Cobelas, M. 2003Autotrophic and heterotrophic picoplankton in wetlands: differences with lake patternsInternational Review of Hydrobiology88464481CrossRefGoogle Scholar
  18. Sánchez-Carrillo, S., Alvarez-Cobelas, M. 2001Nutrient dynamics and eutrophication patterns in a semiarid wetland: effects of a fluctuating hydrologyWater, Air and Soil Pollution1271227Google Scholar
  19. Stockner, J., Callieri, C., Cronberg, G. 2000Picoplankton and other non-bloom-forming cyanobacteria in lakesWhitton, B. A.Potts, M. eds. The Ecology of CyanobacteriaKluwer Academic PublishersNetherlands195231Google Scholar
  20. Vöros, L., Callieri, C., Balogh, K., Bertoni, R. 1998Freshwater picocyanobacteria along a trophic gradient and light qualityHydrobiologia369/370117125CrossRefGoogle Scholar
  21. Weisse, T. 1993Dynamics of autotrophic picoplankton in marine and freshwater ecosystemsJones, J. G. eds. Advances in Microbial EcologyPlenum PressNY327370Google Scholar
  22. Zimmer, K. D., Hanson, M. A., Butler, M. G. 2003Interspecies relationships, community structure, and factors influencing abundance of submerged macrophytes in Prairie wetlandsWetlands23717728Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David G. Angeler
    • 1
    Email author
  • Salvador Sánchez-Carrillo
    • 2
  • Maria A. Rodrigo
    • 3
  • Olga Viedma
    • 1
  • Miguel Alvarez-Cobelas
    • 4
  1. 1.Dpto de Ciencias del Medio AmbienteUniversidad de Castilla – La ManchaToledoSpain
  2. 2.Dpto de Ciencias del Agua y del Medio AmbienteInstituto Tecnológico de SonoraSonoraMexico
  3. 3.Instituto Cavanilles de Biodiversidad y Biología EvolutivaUniversidad de ValenciaValenciaSpain
  4. 4.Centro de Ciencias MedioambientalesCSICMadridSpain

Personalised recommendations