, Volume 563, Issue 1, pp 225–230 | Cite as

Morphological Response of Microcystis aeruginosa to Grazing by Different Sorts of Zooplankton

  • Zhou YangEmail author
  • Fanxiang KongEmail author
  • Xiaoli Shi
  • Huansheng Cao
Primary Research Paper


In the experiment we investigated the effect of grazing by different sorts of zooplankton on the induction of defensive morphology in the cyanobacterium Microcystis aeruginosa. The results showed that protozoan flagellate Ochromonas sp. grazing could induce colony formation in M. aeruginosa, whereas M. aeruginosa populations in the control and the grazing treatments of copepod Eudiaptomus graciloides, cladoceran Daphnia magna, and rotifer Brachionus calyciflorus were still strongly dominated by unicells and paired cells and no colony forma occurred. In the protozoan grazing treatment, the proportion of unicells reduced from 83.2% to 15.7%, while the proportion of cells in colonial form increased from 0% to 68.7% of the population at the end of the experiment. The occurrence of a majority of colonial M. aeruginosa being in the treatment with flagellates, indicated that flagellate grazing on solitary cells could induce colony formation in M. aeruginosa. The colonies could effectively deter flagellate from further grazing and thus increase the survival of M. aeruginosa. The colony formation in M. aeruginosa may be considered as an inducible defense against flagellate grazing under the conditions that toxin cannot deter flagellate from grazing effectively.


Microcystis aeruginosa zooplankton flagellate grazing colony formation inducible defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolch C. J. S. and Blackburn S. I. (1996). Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology 8: 5–13CrossRefGoogle Scholar
  2. Boraas M. E., Seale D. B. and Boxhorn J. E. (1998). Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evolutionary Ecology 12: 153–164CrossRefGoogle Scholar
  3. Boström B., Pettersson A. K. and Ahlgren I. (1989). Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow eutrophic lake. Aquatic Science 51: 153–178CrossRefGoogle Scholar
  4. Brunberg A. K. (1999). Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology 29: 13–22Google Scholar
  5. Burkert U., Hyenstrand P., Drakare S. and Blomqvist P. (2001). Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology 35: 9–17CrossRefGoogle Scholar
  6. Dokulil M. T. and Teubner K. (2000). Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12CrossRefGoogle Scholar
  7. Fialkowska E. and Pajdak-Stós A. (1997). Inducible defence against a ciliate grazer Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria). Proceedings of the Royal Society B: Biological Sciences 264: 937–941CrossRefGoogle Scholar
  8. Fialkowska E. and Pajdak-Stós A. (2002). Dependence of cyanobacteria defense mode on grazer pressure. Aquatic Microbial Ecology 27: 149–157Google Scholar
  9. Fulton III, R. S. and Paerl H. W. (1987). Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology & Oceanography 32: 634–644CrossRefGoogle Scholar
  10. Grossart H. P. and Simon M. (1993). Limnetic macroscopic organic aggregates (lake snow): Occurrence, characteristic and microbial dynamics in Lake Constance. Limnology & Oceanography 38: 532–546Google Scholar
  11. Ha K., Jang M. H. and Takamura N. (2004). Colony formation in planktonic algae induced by zooplankton culture media filtrate. Journal of Freshwater Ecology 19: 9–16Google Scholar
  12. Harvell C. D. (1990). The ecology and evolution of inducible defenses. Quarterly Review of Biology 65: 323–340CrossRefPubMedGoogle Scholar
  13. Hessen D. O. (1993). Morphological-changes in Scenedesmus induced by substances released from Daphnia. Archiv für Hydrobiologie 127: 129–140Google Scholar
  14. Jakobsen H. H. and Tang K. W. (2002). Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquatic Microbial Ecology 27: 261–273Google Scholar
  15. Jang M. H., Ha K., Joo G. J. and Takamura N. (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology 48: 1540–1550CrossRefGoogle Scholar
  16. Landsberg J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390CrossRefGoogle Scholar
  17. Lehman P. W., Boyer G., Hall C., Waller S. and Gehrts K. (2005). Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541: 87–99CrossRefGoogle Scholar
  18. Li X. Y., Liu Y. D., Song L. R., Lei L. M. and Wang S. S. (2003). The toxicity of microcystins to embryo and larvae of loach (Paramisgurnus dabryanus). Acta Hydrobiologica Sinica 27: 318–319Google Scholar
  19. Liu Y., Xie P., Chen F. and Wu X. (2005). Effect of combinations of the toxic cyanobacterium Microcystis aeruginosa PCC7820 and the green alga Scenedesmus on the experimental population of Daphnia pulex. Bulletin of Environmental Contamination and Toxicology 74: 1186–1191CrossRefPubMedGoogle Scholar
  20. Lürling M. (2003a). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie – International Journal of Limnology 39: 85–101Google Scholar
  21. Lürling M. (2003b). The effect of substances from different zooplankton species and fish on the induction of defensive morphology in the green alga Scenedesmus obliquus. Journal of Plankton Research 25: 979–989CrossRefGoogle Scholar
  22. Lürling M. (1996). Zooplankton-induced unicellcolony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia 108: 432–437CrossRefGoogle Scholar
  23. Lürling M. (1997). Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnology & Oceanography 42: 783–788CrossRefGoogle Scholar
  24. Nandini S. (2000). Responses of rotifers and cladocerans to Microcystis aeruginosa (Cyanophyceae): a demographic study. Aquatic Ecology 34: 227–242CrossRefGoogle Scholar
  25. Nishibe Y., Kawabata Z. and Nakano S. (2002). Grazing on Microcystis aeruginosa by the heterotrophic flagellate Collodictyon triciliatum in a hypertrophic pond. Aquatic Microbial Ecology 29: 173–179Google Scholar
  26. Pajdak-Stós A., Fialkowska E. and Fyda J. (2001). Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology 23: 237–244Google Scholar
  27. Quesada A. and Vincent W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology 32: 335–342CrossRefGoogle Scholar
  28. Reynolds C. S. and Walsby A. E. (1975). Water blooms. Biological Reviews 50: 437–481Google Scholar
  29. Reynolds C. S., Jaworski G., Cmiech H. and Leedale G. (1981). On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Philosophical Transactions of the Royal Society of London B -Biological Science 293: 419–477Google Scholar
  30. Rippka R., Deruelles J., Waterbury J., Herdman M. and Stanier R. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61Google Scholar
  31. Tang K. W. (2003). Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. Journal of Plankton Research 25: 831–842CrossRefGoogle Scholar
  32. Trainor F. R. (1993). Cyclomorphosis in Scenedesmus subspicatus (Chlorococcales, Chlorophyta): stimulation of colony development at low temperature. Phycologia 32: 429–433Google Scholar
  33. Tsujimura S., Tsukada H., Nakahara H., Nakajima T. and Nishino M. (2000). Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434: 183–192CrossRefGoogle Scholar
  34. Lürling M. (2003). Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia 491: 241–254CrossRefGoogle Scholar
  35. Wiltshire K., Boersma M. and Meyer B. (2003). Grazer-induced changes in the desmid Staurastrum. Hydrobiologia 491: 255–260CrossRefGoogle Scholar
  36. Xu Q. J., Gao G. and Chen W. M. (2005). Periodical changes of microcystin in Taihu Lake and its relationship with plankton. China Environmental Science 25(1): 28–31Google Scholar
  37. Yang Z., Kong F. X., Cao H. S. and Shi X. L. (2005). Observation on colony formation of Microcystis aeruginosa induced by filtered lake water under laboratory conditions. Annales de Limnologie – International Journal of Limnology 41: 169–173Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.Jiangsu Key Laboratory for Bioresource Technology, School of Biological SciencesNanjing Normal UniversityNanjingChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations