Hydrobiologia

, Volume 530, Issue 1–3, pp 299–307 | Cite as

Variations on a theme? Polyp and medusa development in Podocoryna carnea

  • Diane M. Bridge
  • Chi T. Ha
  • Audra Nemir
  • Andrea Renden
  • Mary M. Rorick
  • Amie Shaffer
  • Danielle M. Underkoffler
  • Andrea E. Wills
  • Daniel E. Martínez
Article

Abstract

The life cycles of many cnidarian species are notable for including two stages with very different morphologies – sessile polyp and swimming medusa. Cnidarians thus provide an opportunity to study the developmental bases of differences in body organization without the need to compare organisms of different taxa. Information about the two life cycle stages suggests the following questions about differences in their development. (1) Are the mouth and tentacle-bearing region (bell margin) specified using any of the same molecular mechanisms as in the polyp? (2) Has the oral-aboral axis of the medusa been truncated relative to that of the polyp by elimination of molecular processes specifying aboral tissue identity? (3) Is the elongated region between the hydrozoan medusa mouth and tentacle ring (the manubrium) patterned using processes that pattern the entire oral-aboral axis in the polyp? We describe how data on their expression of FoxA, NK-2, and Emx genes during polyp and medusa development, together with reagents targeting specific signaling pathways, could be used to address these questions. We have isolated portions of a FoxA2 homologue, an NK-2 gene, and two Emx genes from Podocoryna carnea Sars, an experimentally tractable hydrozoan with both polyp and medusa stages. Phylogenetic analyses indicate that the two P. carnea Emx genes are the result of a gene duplication.

Keywords

emx forkhead NK-2 Podocoryne Cnidaria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, H.R. 2003Head regeneration in HydraDevelopmental Dynamics226225236CrossRefPubMedGoogle Scholar
  2. Bode, P. M. & H. R. Bode, 1984. Patterning in hydra. In Malacinski, G. M. & S. V. Bryant (eds), Pattern Formation: A Primer in Developmental Biology. Macmillan Publishing Co. 213–241. Google Scholar
  3. Boelsterli, U. 1977An electron microscopic study of early developmental stages, myogenesis, oogenesis and cnidogenesis in the anthomedusa, Podocoryne carnea M. Sars.Journal of Morphology154259290CrossRefPubMedGoogle Scholar
  4. Bouillon, J. 1985Essai de classification des Hydropolypes-Hydromeduses (Hydrozoa-Cnidaria)Indo-Malayan Zoology129243Google Scholar
  5. Bridge, D., Cunningham, C.W., Schierwater, B., DeSalle, R., Buss, L.W. 1995Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structureProceedings of the National Academy of Sciences of the USA8987508753Google Scholar
  6. Broun, M., Bode, H.R. 2002Characterization of the head organizer in hydraDevelopment129875884PubMedGoogle Scholar
  7. Broun, M., Sokol, S., Bode, H.R. 1999Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of HydraDevelopment12652455254PubMedGoogle Scholar
  8. Browne, E. 1909The production of new hydranths in hydra by the insertion of small graftsJournal of Experimental Zoology7137CrossRefGoogle Scholar
  9. Brusca, R.C., Brusca, G.J. 2002Invertebrates2SinauerSunderland, MAGoogle Scholar
  10. Campbell, R.D. 1967Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement.Journal of Morphology1211928CrossRefPubMedGoogle Scholar
  11. Collins, A.G. 2002Phylogeny of Medusozoa and the evolution of cnidarian life cyclesJournal of Evolutionary Biology15418432CrossRefGoogle Scholar
  12. Devon, R.S., Porteous, D.J., Brookes, A.J. 1995Splinkerettes–improved vectorettes for greater efficiency in PCR walkingNucleic Acids Research2316441645PubMedGoogle Scholar
  13. Frank, U., Leitz, T., Muller, W.A. 2001The hydroid Hydractinia: a versatile, informative cnidarian representativeBioessays23963971PubMedGoogle Scholar
  14. Frohman, M.A., Martin, G.R. 1989Rapid amplification of cDNA ends using nested primersTechniques1165170Google Scholar
  15. Galliot, B., Schmid, V. 2002Cnidarians as a model system for understanding evolution and regenerationInternational Journal of Developmental Biology463948PubMedGoogle Scholar
  16. Grens, A., Gee, L., Fisher, D.A., Bode, H.R. 1996CnNK-2, an NK-2 Homeobox gene, has a role in patterning the basal end of the axis in hydraDevelopmental Biology180473488CrossRefPubMedGoogle Scholar
  17. Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., Rothbacher, U., Holstein, T.W. 2000WNT signalling molecules act in axis formation in the diploblastic metazoan HydraNature407186189CrossRefPubMedGoogle Scholar
  18. Holstein, T.W., Hobmayer, E., Technau, U. 2003Cnidarians: an evolutionarily conserved model system for regenerationDevelopmental Dynamics226257267CrossRefPubMedGoogle Scholar
  19. Hyman, L.H. 1940The Invertebrates: Protozoa Through CtenophoraMcGraw-HillNew YorkGoogle Scholar
  20. Kim, J., Kim, W., Cunningham, C.W. 1999A new perspective on lower metazoan relationships from 18S rDNA sequencesMolecular Biology and Evolution16423427PubMedGoogle Scholar
  21. Martínez, D.E., Dirksen, M.L., Bode, P.M., Jamrich, M., Steele, R.E., Bode, H.R. 1997Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydraDevelopmental Biology192523536PubMedGoogle Scholar
  22. Masuda-Nakagawa, L.M., Groer, H., Aerne, B.L., Schmid, V. 2000The HOX-like gene Cnox2-Pc is expressed at the anterior region in all life cycle stages of the jellyfish Podocoryne carneaDevelopment, Genes and Evolution210151156CrossRefGoogle Scholar
  23. Miller, D.J., Ball, E.E. 2000The coral Acropora: what it can contribute to our knowledge of metazoan evolution and the evolution of developmental processesBioessays22291296CrossRefPubMedGoogle Scholar
  24. Mokady, O., Dick, M.H., Lackschewitz, D., Schierwater, B., Buss, L.W. 1998Over one-half billion years of head conservation? Expression of an ems class gene in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa)Proceedings of the National Academy of Sciences of the USA9536733678CrossRefPubMedGoogle Scholar
  25. Otto, J.J., Campbell, R.D. 1977Budding in Hydra attenuata: bud stages and fate mapJournal of Experimental Zoology200417428CrossRefPubMedGoogle Scholar
  26. Schuchert, P. 1993Phylogenetic analysis of the CnidariaZeitschrift fuer Zoologische Systematik und Evolutionsforschung31161173Google Scholar
  27. Spangenberg, D. 1965A study of strobilation in Aurelia aurita under controlled conditionsJournal of Experimental Zoology160110CrossRefGoogle Scholar
  28. Spring, J., Yanze, N., Josch, C., Middel, A.M., Winninger, B., Schmid, V. 2002Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateriaDevelopmental Biology244372384CrossRefPubMedGoogle Scholar
  29. Swofford, D.L. 2003PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).Sinauer AssociatesSunderland, MAVersion 4Google Scholar
  30. Webster, G., Wolpert, L. 1966Studies on pattern regulation in hydra. I. Regional differences in time required for hypostome determination.Journal of Embryology and Experimental Morphology1691104PubMedGoogle Scholar
  31. Werner, B., Cutress, C.E., Studebaker, J.P. 1971Life cycle of Tripedalia cystophora Conant (Cubomedusae)Nature232582583PubMedGoogle Scholar
  32. Williams, N.A., Holland, P.W. 2000An amphioxus Emx homeobox gene reveals duplication during vertebrate evolutionMolecular Biology and Evolution1715201528PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Diane M. Bridge
    • 1
  • Chi T. Ha
    • 2
  • Audra Nemir
    • 2
  • Andrea Renden
    • 2
  • Mary M. Rorick
    • 2
  • Amie Shaffer
    • 1
  • Danielle M. Underkoffler
    • 1
  • Andrea E. Wills
    • 2
  • Daniel E. Martínez
    • 2
  1. 1.Department of BiologyElizabethtown CollegeElizabethtownUSA
  2. 2.Department of BiologyPomona CollegeClaremontUSA

Personalised recommendations