Skip to main content
Log in

Stoichiometry of aerobic mineralization (O/C) of aquatic macrophytes leachate from a tropical lagoon (São Paulo –Brazil)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l−1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1996. Stream Ecology-Structure and Function of Running Waters. Chapman & Hall, London.

    Google Scholar 

  • Anesio, A. M., L. J. Tranvik & W. Granéli, 1999. Production of inorganic carbon from aquatic macrophytes by solar radiation. Ecology 80: 1852-1859.

    Google Scholar 

  • Bianchini Jr., I., 1997. The degradation process of organic matter in reservoirs. In Rosa, L. P. & M. A. Santos (eds), Hydropower Plants and Greenhouse Gas Emissions. COPPE Report/Ed. Tecnológica, Rio de Janeiro: 6-27.

    Google Scholar 

  • Bianchini Jr., I., 2000. Decomposição de macrótas aquáticas da lagoa do Infernão: o estado da arte. In Santos, J. E. & Pires, J. S. R. (eds), Estudos Integrados em Ecossistemas-Estaçaão Ecológica de Jataí, vol. 2. Rima, São Carlos, 613-629.

  • Bianchini Jr., I., 2003. Growth and decomposition models for aquatic macrophytes (in portuguese) In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrótas aquáticas. EDUEM, Maringá; 85-126.

    Google Scholar 

  • Bianchini Jr., I. & R. M. Antonio, 2003. The effect of particle size on the leaching of Scirpus cubensis Poepp & Kunth. Brazilian Journal of Biology 63: 195-205.

    Google Scholar 

  • Bitar, A. L. & I. Bianchini Jr., 2002. Mineralisation essays of some organic resources of aquatic systems. Brazilian Journal of Biology 62: 557-564.

    CAS  Google Scholar 

  • Brum, P. R., V. F. Farjalla, J. F. Gonçalves Jr., A. M. Santos, M. T. Pôrto, E. D. R. Vieira, F. M. Ferreira & I. Bianchini Jr., 1999. Aspects of uptake of dissolved oxygen in Cabiúnas and Imboassica lagoons (Macaé, RJ). Brazilian Archives of Biology and Technology 42(4): 433-440.

    CAS  Google Scholar 

  • Chapra, S. C. & K. H. Reckhow, 1983. Engineering Approaches for Lake Management, vol. 2. Mechanistic Modeling. Woburn, Butterworth/Ann Arbor.

    Google Scholar 

  • Cunha, M. B. & I. Bianchini Jr., 1998. Mineralization aeróbia de Cabomba piauhyensis e Scirpus cubensis. Acta Limnologica Brasiliensia 10(1): 81-91.

    Google Scholar 

  • Cunha, M. B. & I. Bianchini Jr., 2001. Formação de compostos húmicos a partir da degradaçãode Scirpus cubensis e Cabomba piauhyensis. Acta Limnologica Brasiliensia 13(2): 35-43.

    Google Scholar 

  • Cunha-Santino, M. B. & I. Bianchini Jr., 2002a. Estequiometria da decomposição aeróbia de galhos, cascas serapilheira e folhas. In Espíndola, E. (ed.), Recursos hidroenergéticos: usos, impactos e planejamento integrado São Carlos, Rima: 185-197.

  • Cunha-Santino, M. B. & I. Bianchini Jr., 2002b. Humic substance mineralization in a tropical oxbow lake (São Paulo, Brazil). Hydrobiologia 468: 33-43.

    Google Scholar 

  • Davis, M. L. & Cornwell, D. A., 1991. Introduction to Environmental Engineering. McGraw-Hill, New York.

    Google Scholar 

  • Dilly, O., 2001. Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biology and Biochemistry 33: 117-127.

    CAS  Google Scholar 

  • Farjalla, V. F., C. C. Marinho & F. A. Esteves, 1999. The uptake of oxygen in the initial stages of decomposition of aquatic macrophytes and detritus from terrestrial vegetation in a tropical coastal lagoon. Acta Limnologica Brasiliensia 11(2): 185-193.

    Google Scholar 

  • Godinho, M. J. L., 2000. Ecologia de Microrganismos Lacustres. PPGERN-UFSCar, São Carlos.

    Google Scholar 

  • Imai, A., T. Fukushima, K. Matsushige & Y. H. Kim, 2001. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, it 's in. owing rivers, and other organic matter sources. Water Research 35(17): 4019-4028.

    PubMed  CAS  Google Scholar 

  • Jorgensen S. E., 1986. Fundamentals of Ecological Modelling. Developments in Environmental Modelling, 9. Elsevier, Amsterdam.

    Google Scholar 

  • Lehninger, A. L., D. L. Nelson & M. M. Cox, 1993. Principles of Biochemistry. 2nd edn. Worth Publishers, New York.

    Google Scholar 

  • Lemos, R. M. A., I. Bianchini Jr. & J. B. N. Mauro, 1998. Decomposition kinetics of aquatic macrophyte Scirpus cubensis under the in. uence of dissolved phosphate levels. R. Esc. Minas, Ouro Preto 51(3): 28-31.

    Google Scholar 

  • Lousier, J. D. & D. Parkinson, 1976. Litter decomposition in a cool temperate deciduous forest. Canadian Journal of Botany 54: 419-436.

    CAS  Google Scholar 

  • Lush, D. L. & H. B. N. Hynes, 1978. The uptake of dissolved organic matter by small spring stream. Hydrobiologia 60(3): 271-275.

    Google Scholar 

  • McLatchey, G. P. & K. R. Reddy, 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality 17: 1268-1274.

    Article  Google Scholar 

  • Pacobahyba, L. D., 2002. Decomposiçãode Staurastrum c.f. iversenii NYGAARD var. americanum: Efeitos da qualidade do recurso, da disponibilidade de oxigênio e da temperatura. UFSCar, São Carlos.

    Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetic of microbial food webs. Hydrobiologia 156: 7-18.

    Google Scholar 

  • Press, W. H., S. A., Teukolsky, W. T. Vetterling & S. A. Flannery, 1993. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. Wiley-Interscience, New York.

    Google Scholar 

  • Swift, M. J., D. W. Heal & J. M. Anderson, 1979. Studies in Ecology. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford.

    Google Scholar 

  • USEPA-United States Environmental Protection Agency., 1985. Rates, Constants and Kinetics Formulations in Surface Water Quality Modeling. 2nd edn. EPA/600/3-85/040. U. S. Government Printing Office, Athens.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edn. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181-198.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peret, A., Bianchini, I. Stoichiometry of aerobic mineralization (O/C) of aquatic macrophytes leachate from a tropical lagoon (São Paulo –Brazil). Hydrobiologia 528, 167–178 (2004). https://doi.org/10.1007/s10750-004-2340-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-004-2340-x

Navigation