Skip to main content
Log in

Hydraulic Model of Atmospheric Turbulence

  • Published:
Power Technology and Engineering Aims and scope

Simulation of atmospheric turbulence by an open flow with an inertial interval of spectrum with the division of velocity pulsations into four components is proposed. Forty structural scales, partly confirmed by field and laboratory data, for ten characteristics of the spectrum have been obtained and shown in a graph. The concept of a memory constant of the atmosphere that determines the duration of accurate weather forecast has been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kolmogorov, “Local structure of turbulence in an incompressible fluid at very high Reynolds numbers,” Dokl. AN SSSR, 30(4), 299 – 303 (1941).

    Google Scholar 

  2. A. M. Obukhov, “On the energy distribution in the spectrum of a turbulent flow,” Izv. AN SSSR Ser. Geogr. Geofiz., 5(4–5), 453 – 466 (1941).

    Google Scholar 

  3. D. H. Slade (ed.), Meteorology and Atomic Energy [Russian translation], Gidrometeoizdat, Leningrad (1971).

    Google Scholar 

  4. L. T. Matveev, Course of General Meteorology. Physics of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1984).

  5. B. A. Fidman, “Some experimental data on large-scale turbulence in an open flow,” Izv. AN SSSR Ser. Geogr. Geofiz., 14(3), 267 – 380 (1950).

    Google Scholar 

  6. I. Van der Hoven, “Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour,” J. Meteorol., 14(2), 160 – 164 (1957).

    Article  Google Scholar 

  7. A. O. Shcherbakov, Transfer and Distribution of Suspended Matter in an Open Flow. Author’s Abstract of Candidate’s Thesis [in Russian], VNIIGiM, Moscow (1989).

  8. A. V. Karaushev, Theory and Methods of Calculation of River Sediments [in Russian], Gidrometeoizdat, Leningrad (1977).

    Google Scholar 

  9. A. G. Nazaryan, “Results of field studies for simulation of river bed evolution,” in: Results of Complex Studies on the Sevan Problem [in Russian], Izd. AN Arm. SSR, Yerevan (1962).

  10. L. D. Landau, “On the problem of turbulence,” Dokl. AN SSSR, 44(8), 339 – 342 (1942).

    Google Scholar 

  11. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics. Mechanics of Turbulence. Part II [in Russian], Nauka, Moscow (1967).

  12. F. R. Ulinich, “Statistical dynamics of a turbulent incompressible fluid,” Dokl. AN SSSR, 183(3), 535 – 537 (1968).

    MATH  Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Mechanics of Continua [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  14. J. A. Cunge, F. M. Holly, and A. Verwey, Practical Aspects of Computational River Hydraulics [Russian translation], Énergoatomizdat, Moscow (1985).

    Google Scholar 

  15. H. B. Fischer, Longitudinal Dispersion in Laboratory and Natural Streams. Doctor of Philosophy Thesis, California Institute of Technology, Pasadena (1966).

  16. A. D. Greshaev, Research on the Transfer of Suspended Particles by Water Flow. Author’s Abstract of Candidate’s Thesis [in Russian], Mosk. Inst. Inzh. Vod. Khoz., Moscow (1958).

  17. A. M. Yaglom, “On the acceleration field in a turbulent flow,” Dokl. AN SSSR, 67(5), 795 – 798 (1949).

    MathSciNet  MATH  Google Scholar 

  18. K. V. Grishanin, Theory of River Bed Evolution [in Russian], Transport, Moscow (1972).

    Google Scholar 

  19. B. F. Snishchenko, “On the relationship between the height of sandy ridges and the parameters of the river flow and channel,” Meteorol. Gidrolog., No. 6, 84 – 91 (1980).

  20. E. E. Gossard, “Power spectra of temperature, humidity and refractive index from aircraft and tethered balloon measurements,” IRE T. Anten. Prop., 8(2), 186 – 201 (1960).

    Article  Google Scholar 

  21. V. N. Kolesnikova and A. S. Monin, “On the spectra of micrometeorological, synoptic and climatic fluctuations of meteorological fields,” Meteorol. Issl., No. 16, 30 – 56 (1968).

  22. J. E. Cermak, “Applications of fluid mechanics to wind engineering: A Freeman Scholar lecture,” J. Fluid. Eng., 97(1), 9 – 38 (1975).

    Article  Google Scholar 

  23. V. S. Verbitsky, “Scaling of full-scale open flows,” in: Complex Land Reclamation: Means of Increasing the Productivity of Agricultural Lands [in Russian], VNIIGiM, Moscow (2014).

  24. I. F. Karasev, River Bed Evolution during Runoff Diversion [in Russian], Gidrometeoizdat, Leningrad (1975).

    Google Scholar 

  25. V. V. Kovalenko, Measurement and Calculation of Unsteady River Flows [in Russian], Gidrometeoizdat, Leningrad (1984).

    Google Scholar 

  26. D. I. Grinval’d and V. I. Nikora, River Turbulence [in Russian], Gidrometeoizdat, Leningrad (1988).

  27. A. Defant, “Die Zirkulation der Atmosphare in den gemässigten Breiten der Erde,” Geogr. Ann., 3(3), 209 – 265 (1921).

    Google Scholar 

  28. C. E. Leith, “Numerical simulation of the earth’s atmosphere,” Meth. Comput. Phys., 4, 1 – 28 (1965).

    Google Scholar 

  29. J. G. Charney, “Geostrophic turbulence,” J. Atmosphere Sci., 28(6), 1087 – 1095 (1971).

    Article  Google Scholar 

  30. K. V. Grishanin, Fundamentals of Stream Dynamics [in Russian], Transport, Moscow (1990).

  31. V. S. Verbitsky and A. G. Khodzinskaya, “Accounting for the sediment motion modes in determining the hydraulic resistance of streams,” Gidrotekh. Storit., No. 8, 46 – 50 (2005).

  32. V. E. Sergutin and Yu. I. Ryabokon’, “Hydraulic resistance of natural channels,” Izv. Vuzov. Stroit., No. 2, 75 – 77 (1992).

  33. N. L. Byzova, “Turbulent diffusion of impurities in the lower layer of the atmosphere,” Tr. Inst. Éksper. Meteorol., 15 (1970).

  34. V. I. Tatarskii, Distribution of Waves in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  35. V. S. Verbitsky and A. G. Khodzinskaya, “Some general aspects of the description of atmospheric and river turbulence,” Gidrotekh. Stroit., No. 11, 43 – 47 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Khodzinskaya.

Additional information

V. S. Verbitsky is deceased

Translated from Gidrotekhnicheskoe Stroitel’svo, No. 5, May 2021, pp. 45 – 57. DOI: 10.34831/EP.2021.27.86.006

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, V.S., Khodzinskaya, A.G. Hydraulic Model of Atmospheric Turbulence. Power Technol Eng 55, 509–518 (2021). https://doi.org/10.1007/s10749-021-01390-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-021-01390-4

Keywords

Navigation