Skip to main content
Log in

An Illustration of the Possibility of Using GNSS Observations to Measure Evaporation Over a Reservoir Using the Example of Nizhnekamsk HPP

  • Published:
Power Technology and Engineering Aims and scope

Daily variations of integrated water vapor content in the atmosphere in the region of the Nizhnekamsk HPP were examined, from measurement data of GNSS radio signals in autumn 2010. It was established that the difference of these variations between the remote station and the stations at the buildings of the HPP were caused by evaporation from the surface of the water reservoir, and has an expressed daily variation with a maximum at 12:00 UTC and a range approximately the variation of 0.4 kg/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Behr, K.W. Hudmit, and N. E. King, “Monitoring structural deformation at Pacoima Dam, California using continuous GPS,” in: Proceedings of ION GPS, ION, Nashville, Tennessee, pp. 59 – 68 (1998).

  2. G. Dardanelli, G. La Loggia, N. Perfetti, F. Capodici, L. Puccio, and A. Maltese, “Monitoring displacements of an earthen dam using GNSS and remote sensing,” in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI, SPIE (2014).

  3. Z. Jia, G. Liu,W.Wang, and Y. Zhou, “GNSS investigation in the early stage of the Three Gorges project on the Yangtze River,” in: Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE, Wuhan, 2013), pp. 389 – 396 (2013).

  4. D. R. Rutledge, S. Z. Meyerholtz, N. E. Brown, and C. S. Baldwin, GPS World, 17, 26 (2006).

    Google Scholar 

  5. V. V. Kalinnikov and O. G. Khutorova, “Some regularities of gradient parameters of GNSS tropospheric delay in Europe,” Sovr. Probl. Dist. Zond. Zemli Kosmosa, 16(6), 60 – 71 (2019).

    Article  Google Scholar 

  6. A. Dai, J. Wang, R. H. Ware, and T. Van Hove, “Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity,” J. Geophys. Res. Atmos, 107, ACL 11-1 – ACL 11 – 14 (2002). DOI: 10.1029/2001JD000642.2002

  7. V. V. Kalinnikov and O. G. Khutorova, “Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga – Ural region of Russia,” Ann. Geophys., 35, 453 – 464. DOI: 10.5194/angeo-35-453-2017.

  8. J. P. Ortiz de Galisteo, V. Cachorro, C. Toledano, B. Torres, N. Laulainen, Y. Bennouna, and A. de Frutos., “Diurnal cycle of precipitable water vapor over Spain,” Q. J. Roy. Meteor. Soc., 137, 948 – 958 (2011).

    Article  Google Scholar 

  9. V. V. Kalinnikov, A. V. Ustinov, and R. V. Zagretdinov, “Influence of irregularities of water vapor field in the surface layer of the atmosphere on the results of satellite monitoring of hydropower structures in the region of reservoirs,” Power Technol Eng., 52, 259 – 264 (2018). DOI: https://doi.org/10.1007/S10749-018-09420.

    Article  Google Scholar 

  10. A. Mehran, E. A. Clark, and D. P. Lettenmaier, “Spatial variability of wet troposphere delays over inland water bodies,” J. Geophys. Res., 122, 11,329 – 11,346.

  11. A. E. Niell, “Global mapping fimctions for the atmosphere delay at radio wavelengths,” J. Geophys. Res. Sol. Ea., 101, 3227 – 3246 (1996).

    Article  Google Scholar 

  12. G. Chen and T. A. Herring, “Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data,” J. Geophys. Res., 102, 20,489 – 20,502 (1997).

    Article  Google Scholar 

  13. M. Bevis, S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, J. Appl. Meteorol., 33, 379 (1994).

    Article  Google Scholar 

  14. J. Saastamioinen, “Contributions to then theory atmospheric refraction. Part II. Refraction corrections in satellite Geodesy,” Bull. Geod., No. 107, 13 – 34 (1973).

  15. J. Askne and H. Nordius, “Estimation of tropospheric delay for microwaves from surface weather data,” Radio Sci., 22(3), 379 – 386 (1987).

    Article  Google Scholar 

  16. V. B. Mendes, Modeling the Neutral-Atmospheric Propagation Delay in Radiometric Space Techniques. Tech. Report No. 199, UNB, New Brunswick (1999).

  17. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov,M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, “Quality assessment of integrated water vapor measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques,” Atmos. Meas. Tech., 10, 4521 – 4536 (2017). DOI: https://doi.org/10.5194/amt-10-4521-2017.

    Article  Google Scholar 

  18. L. T. Matveev, Fundamentals of General Meteorology: Physics of the Atmosphere, Program for Scientific Translations, Jerusalem (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kalinnikov.

Additional information

Translated from Gidrotekhnicheskoe Stroitel’stvo, No. 1, pp. 43 – 46, January, 2021. DOI: 10.34831/EP.2021.95.72.005

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinnikov, V.V., Ustinov, A.V., Khutorova, O.G. et al. An Illustration of the Possibility of Using GNSS Observations to Measure Evaporation Over a Reservoir Using the Example of Nizhnekamsk HPP. Power Technol Eng 55, 168–171 (2021). https://doi.org/10.1007/s10749-021-01336-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-021-01336-w

Keywords

Navigation