Skip to main content
Log in

Development and Pilot Operation of a Three-Phase Fully Optical Measuring Voltage Transformer of 220 kV with Digital Output

  • Published:
Power Technology and Engineering Aims and scope

An electronic three-phase fully fiber-optic measuring voltage transformer (FOVT) of accuracy class 0.2 for a nominal voltage of 220 kV with a digital output for operation at power system facilities, including electrical substations, is described. The operation principle of the device is based on the use of a longitudinal linear electro-optical effect (Pockels effect) for measuring AC voltage. The fiber-optic measurement scheme based on low-coherent interferometry is connected via a fiber cable to an optical high-voltage primary converter (HVPC) with an electro-optical crystal placed in it; there are no additional voltage dividers inside. The digital signal processing unit (DPU) contains optical and electronic circuits for generating, detecting, and processing an electro-optical signal. FOVT has a digital interface that complies with the IEC 61950-9-2 LE standard, and can be used as a component for the Digital Substation and Smart Power Grid technologies. The design features of the HVPC and the DPU are described and the results of the metrological characteristics of FOVT-220, based on the data obtained during the certification and pilot operation at the 220 kV electrical substation, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Okosi (ed.), Fiber Optic Sensors [Russian translation], Énergoatomizdat, Leningrad (1990).

    Google Scholar 

  2. E. Udda, Fiber Optic Sensors. Introductory Course for Engineers and Scientists [Russian translation], Tekhnosfera, Moscow (2008).

    Google Scholar 

  3. J. L. Santos and F. Farahi (eds.), Handbook of Optical Sensors, CRC Press, Boca Raton (2014).

    Google Scholar 

  4. A. S. Sonin and A. S. Vasilevskaya, Electro-Optical Crystals [in Russian], Atomizdat, Moscow (1971).

    Google Scholar 

  5. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  6. A. D. Kersey, “Recent progress in interferometric fiber sensor technology,” P. Soc. Photo-Opt. Inst., 367, 2 – 12 (1991).

    Google Scholar 

  7. K. S. Lee, “Electrooptic voltage sensor: birefringence effects and compensation methods,” Appl. Optics, 29(30), 4453 – 4461 (1990).

    Article  Google Scholar 

  8. Y. L. Lo and J. S. Sirkis, “Passive demodulation techniques for Michelson and polarimetric optical fiber sensors,” Exp. Techniques, 19(3), 23 – 27 (1995).

    Article  Google Scholar 

  9. G. I. Skanavi, Physics of Dielectrics, Vol. 2 [in Russian], Fizmatlit, Moscow (1958).

    Google Scholar 

  10. K. M. Bohnert and J. Nehring, “Fiber-optic sensing of electric field components,” Appl. Optics, 27(23), 4814 – 4818 (1988).

    Article  Google Scholar 

  11. K. Bohnert, M. Ingold, and J. Kostovic, “Fiber-optic voltage sensor for SF6 gas-insulated high-voltage switchgear,” Appl. Optics, 38(10), 1926 – 1933 (1999).

    Article  Google Scholar 

  12. K. M. Bohnert, J. Kostovic, and P. Pequignot, “Fiber optic voltage sensor for 420 kV electric power systems,” Opt. Eng., 39, 3060 – 3067 (2000).

    Article  Google Scholar 

  13. F. Rahmatian, “Design and application of optical voltage and current sensors for relaying,” in: 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, pp. 532 – 537 (2006).

  14. M. Vlasov and A. Serdtsev, “Optical transformers: first experience,” Élektooborud. Ékspl. Remont, No. 11, 17 – 20 (2008).

  15. I. Abramenkova, I. Korneev, and Yu. Troitskii, “Optical current and voltage sensors,” Kompon. Tekhnol., No. 109 (2010).

  16. I. Kovtsova, Processing and Transferring Credentials for Classic and Digital Power Substations [in Russian], Litres, Moscow (2017).

    Google Scholar 

  17. Main Provisions of the Concept of an Intelligent Energy System with an Active Adaptive Network, http://www.fsk-ees.ru/upload/docs/ies$aas.pdf (2012).

  18. Policy of Innovative Development, Energy Conservation and Energy Efficiency Increase in Rosseti JSC, https://www.rosseti.ru/investment/policy/innovation$development/doc/policy.pdf (2014).

  19. RF Pat. No. 2579541, A. A. Stepanov, M. A. Novikov, and P. N. Kurovich, “Voltage meter based on pockels effect,” appl. 25.02.2015, publ. 10.04.2016.

  20. V. V. Ivanov and A. A. Stepanov, “Interference fiber-optic voltage sensor based on the inverse piezoeffect,” Foton-Ékspress, No. 6, 68 – 69 (2013).

  21. V. Ivanov,M. Levichev, Y. Nozdrin and M. Novikov, “Temperature dependence of electro-optic effect and natural linear birefringence in quartz measured by low-coherence interferometry,” Appl. Optics, 54(33), 9911 – 9918 (2015).

    Article  Google Scholar 

  22. S. S. Ustavshchikov, S. I. Komarova, and M. A. Novikov, “Remote fiber sensor,” Foton-Ékspress, 9(special issue), 81 – 82 (2009).

    Google Scholar 

  23. Ch. Zhang, X. Feng, S. Liang, Ch. Zhang, and C. Li, “Quasi-reciprocal reflective optical voltage sensor based on Pockels effect with digital closed-loop detection technique,” Opt. Commun., 283(20), 3878 – 3883 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Morozov.

Additional information

Translated from Élektricheskie Stantsii, No. 2, February 2020, pp. 28 – 36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.N., Stepanov, A.A., Malakhov, S.V. et al. Development and Pilot Operation of a Three-Phase Fully Optical Measuring Voltage Transformer of 220 kV with Digital Output. Power Technol Eng 54, 261–268 (2020). https://doi.org/10.1007/s10749-020-01200-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-020-01200-3

Keywords

Navigation