Skip to main content
Log in

Development and Evaluation of a Method of Reducing Erosion Wear of Impellers

  • Published:
Power Technology and Engineering Aims and scope

Results of numerical simulation of the process of heating of the nozzle blade of a steam turbine in order to reduce the concentration and sizes of droplets that can induce erosion are presented. Results of numerical simulation of the motion of polydisperse flow of moisture accompanied by the formation of a film on the surface of the blade are compared with experimental data. A technique of calculating heating of nozzle blades as an effective method of combatting erosion is developed. Results that show that the efficiency of heating is significantly higher than intrachannel separation are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Young, K. K. Yau, and P. T. Walters, “Fog droplet deposition and coarse water formation in low-pressure steam turbines: a combined experimental and theoretical analysis,” J. Turbomach., 110(2), 163 – 172 (1988).

    Article  Google Scholar 

  2. Qulan Zhoum, Na Li, Xi Chen, Akio Yonezu, Tongmo Xu, Shien Hui, and Di Zhang, “Water drop erosion turbine blades: numerical framework and application,” Mater. Trans., 49(7), 1606 – 1615 (2008).

    Article  Google Scholar 

  3. G. A. Filippov and O. A. Povarov, Separation of Moisture in Turbines of Nuclear Power Plants [in Russian], Énergiya, Moscow (1980).

    Google Scholar 

  4. M. Hoznedl, L. Taje, and L. Bednar, “Separation of the liquid phase from the stator blades of the last stage of a steam turbine,” Bauman Centenary Conference BCE-2012-19 (Nov. 10, 2012), Cambridge, England (2012).

  5. V. G. Gribin, A. A. Tishchenko, I. Yu. Gavrilov, V. V. Popov, I. Yu. Sorokin, V. A. Tishchenko, and S. V. Khomyakov, “Experimental study of intrachannel separation in a flat nozzle turbine blade assembly with wet stream flow,” Power Technol. Eng., 50(2), 180 – 187 (2016).

    Article  Google Scholar 

  6. M. Ye. Deych, Gaseodynamics of the Cascades of Turbomachines [in Russian], Énergoatomizdat, Moscow (1996).

    Google Scholar 

  7. S. Y. Lee and S. U. Ryu, “Recent progress of spray-wall interaction research,” J. Mech. Sci. Technol., 20(8), 1101 – 1117 (2006).

    Article  Google Scholar 

  8. C. Mundo, M. Sommerfeld, and C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process,” Int. J. Multiphase Flow, 21(1), 151 – 173 (1995).

    Article  MATH  Google Scholar 

  9. I. I. Kirillov et al., “Breakup of films of moisture in the exit from the edges of the nozzle blades of steam turbines,” Inzh. Fiz. Zh., XV(1), 85 – 90 (1968).

    Google Scholar 

  10. M. A. Friedrich, H. Lan, J. L. Wegener, J. A. Dallmeier, and B. F. Armaly, “A separation criterion with experimental validation for shear-driven films in separated flows,” J. Fluids Eng., 130, 051301-1 – 051301-9 (2008).

    Article  Google Scholar 

  11. G. Fillipov, V. Gribin, A. Tishchenko, I. Gavrilov, and V. Tishchenko, “Experimental studies of polydispersed wet steam flows in a turbine blade cascade,” Proc. IMechE Part A. J. Power and Energy, 228(2), 168 – 177 (2014).

    Article  Google Scholar 

  12. V. G. Gribin, A. A. Tishchenko, V. A. Tishchenko, I. Yu. Gavrilov, I. Yu. Sorokin, and R. A. Alexeev, “Experimental study of the features of the motion of liquid-phase particles in the interblade channel of the nozzle array of a steam turbine,” Power Technol. Eng., 51(1), 82 – 88 (2016).

    Article  Google Scholar 

  13. G. A. Fillipov, V. G. Gribin, A. A. Tishchenko, I. Yu. Gavrilov, V. A. Tishchenko, S. V. Khomiakov, V. V. Popov, and I. Yu. Sorokin, “Steam injection impact on the performance of nozzle grid in wet-vapor stream,” Thermal Eng., 63(4), 233 – 238 (2016).

    Article  Google Scholar 

  14. V. G. Gribin, A. A. Tishchenko, R. A. Alexeev, I. Yu. Gavrilov, S. V. Khomyakov, V. V. Popov, V. A. Tishchenko, and I. Yu. Sorokin, “Performance of a wet-steam turbine stator blade with heating steam injection,” in: Proc. 12th European Conf. Turbomachinery Fluid Dynamics & Thermodynamics ETC12 (April 3 – 7, 2017), Stockholm, Sweden, ETC2017-312.

  15. S. V. Khomyakov, R. A. Alexeev, I. Y. Gavrilov, V. G. Gribin, A. A. Tishchenko, V. A. Tishchenko, and V. V. Popov, “Experimental study of the efficiency of steam injection on wet steam turbine (stator blade cascade),” J. Phys. Conf. Ser., 891, 012256 (2017).

    Article  Google Scholar 

  16. I. Yu. Gavrilov, V. V. Popov, I. Yu. Sorokin, V. A. Tishchenko, and S. V. Khomyakov, “Contactless technique for determining the average sizes of erosion-hazardous droplets in polydisperse wet steam flow,” Thermal Eng., 61(8), 577 – 584 (2014).

    Article  Google Scholar 

  17. N. V. Averkina, Yu. Ya. Kachuriner, V. G. Orlik, F. M. Sukharev, and M. A. Filaretov, “Experience gained from industrial use of heating of stationary plates for reducing erosion of moist-steam turbine stages,” Élektr. Stantsii, No. 2, 24 – 28 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Gavrilov.

Additional information

The present study was carried out with support from a grant of the Russian Scientific Foundation (Project No. 17-79-10181).

Translated from Élektricheskie Stantsii, No. 8, August 2018, pp. 12 – 18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, I.Y., Tishchenko, V.A. & Popov, V.V. Development and Evaluation of a Method of Reducing Erosion Wear of Impellers. Power Technol Eng 52, 563–569 (2019). https://doi.org/10.1007/s10749-019-00983-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-019-00983-4

Keywords

Navigation