Skip to main content
Log in

Investigation of Dynamic Characteristics of Concrete Dam by Underwater Blasts in the Head Race of the Reservoir under Field Conditions

  • Published:
Power Technology and Engineering Aims and scope

Results are presented for full-scale dynamic investigations of a concrete dam with a height of 120 m and crest length of 1040 m by excitation of its free vibrations with pulsed loads created by underwater blasts in the reservoir in advance of the thrust face of the dam. Use of this method made it possible to determine the natural frequencies, vibration forms, vibration decrements, and the dynamic elastic modulus of the concrete in the dam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Kirillov, V. V. Krylov, and A. E. Sargsyan, Interaction Between Foundations of Power-Plant Structures and Their Beds Under Dynamic Loads [in Russian], Énergoatomizdat Moscow (1984).

    Google Scholar 

  2. A. P. Kirllov and A. E. Sargsyan, Dynamics and Earthquake Resistance of Nuclear Power Plants with Consideration of Bed Flexibility [in Russian], Informénergo, Moscow (1988).

    Google Scholar 

  3. Yu. T. Chernov, Applied Methods of Structure Dynamics [in Russian], ASV, Moscow (2001).

    Google Scholar 

  4. L. V. Glukhov, S. D. Ivano, and N. V. Dukashina, Dynamics, Strength, and Reliability of Components of Engineering Structures [in Russian], Stroiizdat, Moscow (2003).

    Google Scholar 

  5. G. Shablinsky, T. Zoubkov, and A. Isaikin, “Frequency response analysis of NPP containment with WWER-1000 type of reactor,” in: Proc. of 18th Int. Conf. on Structural Mechanics in Reactor Technology (SMIRT 18 ), Beijing (2005), pp. 83 – 88.

  6. A. Liel, C. Haselton, and G. Deierlein, Incorporating Modeling Uncertainties in the Assessment of Seismic Collapse Risk of Buildings, Stanford University, U.S.A. (2009), p. 134.

    Google Scholar 

  7. M. N. Fardis, Seismic Design, Assessment, and Retrofitting of Concrete Building (2009), pp. 25 – 33.

  8. S. H. Jeong, A. M. Mwafy, and A. S. Elnashai, “Probabilistic seismic performance assessment of code-compliant multistory reinforced-concrete buildings of engineering structures,” Engin. Struct., 34, 527 – 537 (2012).

    Article  Google Scholar 

  9. S. I. Zavalishin, G. É. Shablinskii, D. A. Subkov, and A. A. Rumyantsev, Dynamic Monitoring of Buildings and Structures for Earthquake-Resistance Control [in Russian], MGSU, Moscow (2009), pp. 83 – 89.

    Google Scholar 

  10. O. A. Koval’chuk, D. A. Zubkov, and P. I. Andreeva, “Efficiency study of rubber-metal vibration insulators manufactured by Vibroseismozashchita Co. as applies to frame buildings installed near shallow metro tunnels,” Vestn. MGSU, No. 6, 335 – 340 (2011).

  11. P. I. Andreeva and O. A. Koval’chuk, “Comparative analysis of results of experimental dynamic-field investigations and calculation of dynamic characteristics of high-rise tenement buildings,” Comput. Civ. Struct. Engin., 8(4), 13 – 18 (2012).

    Google Scholar 

  12. P. I. Andreeva and E. Yu. Sergeevtsev, “Experimental determination of dynamic characteristics of a 40-story tenement building under field conditions,” Prom. Grazhd. Stroit., No. 12, 37 – 39 (2012).

    Google Scholar 

  13. P. I. Andreeva and G. É. Shablinskii, “Influence of passing railroad transport on vibrations of near-by building housing the design office of Vertolety Rossia,” Vestn. TGASU, No. 1, 53 – 58 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Gidrotekhnicheskoe Stroitel’stvo, No. 12, December 2013, pp. 10 – 15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavalishin, S.I., Shablinskii, G.É. Investigation of Dynamic Characteristics of Concrete Dam by Underwater Blasts in the Head Race of the Reservoir under Field Conditions. Power Technol Eng 48, 17–22 (2014). https://doi.org/10.1007/s10749-014-0476-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-014-0476-z

Keywords

Navigation