Skip to main content
Log in

Hydraulic analysis of averaged parameters of turbulent flows in circular pipes and plane channels

  • Published:
Power Technology and Engineering Aims and scope

Variation in the position of three characteristic (conditional) layers of a flow is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Nikuradze, “Gezetzassigkeiten dez turbulenten stomung in glatten rohren,” VDI. Forschungsheft, No. 356 (1932).

  2. C. F. Colebrook, “Turbulence flow in pipes with particular reference to the transition region between smooth and rough pipelines,” J. Inst. Civ. Eng. (1939).

  3. A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics. Part 1 [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Continuum Mechanics [in Russian], Izd-vo Tekhniko-Teoreticheskoi Literatury (1953).

  5. L. Prandtl, “Nenere ergebnisse der turbulenzforschung,” VDI, 77(5) (1933).

  6. D. Coles, “The low of the wake in turbulent boundary layer,” J. Fluid Mech., 1(3) (1956).

  7. E. D. Van Drist, Convective Heat Transfer in Gases, Turbulence Flow and Heat Transfer [Russian translation], Izd. Inostrannoi Literatury, Moscow) (1963).

    Google Scholar 

  8. I. K. Rotta, Turbulent Boundary in an Incompressible Fluid [in Russian], Sudostroenie, Leningrad (1967).

    Google Scholar 

  9. I. Guo and P. Y. Julien, “Boundary shear stress in smooth rectangular open channels,” in: Advances in Hydraulics and Water Engineering, Proc. of the 13th I4HR-APD Congr., Vol. 1, Singapore (2002).

  10. T. Karman, “Some aspects of the theory of turbulent motion,” in: Proc. of the Int. Congr. for Appl. Mech., Cambridge (1934).

  11. C. I. Taylor, “The transport of fertility and heart through fluids and turbulent motion,” Fifth Proc. Royal Soc. Ser. A135, No. 828 (1932).

  12. A. N. Kolmogorov, “Problem of resistance and velocity profile during turbulent flow in pipes,” Dokl. Akad. Nauk SSSR, 84(1) (1952).

  13. A. N. Kolmogorov, “Problem of the resistance law during turbulent flow in smooth pipes,” Dokl. Akad. Nauk SSSR, 52(3) (1946).

  14. A. Fage and H. Townend, Proc. Royal Soc. Ser. A, 135 (1932).

  15. V. B. Gussak, “Some microfilm observations of soil erosion in the near-boundary layer,” Pochvovedenie, No. 7 (1948).

  16. J. Count-Bello, Turbulent Flow in a Channel with Parallel Walls [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  17. O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Phil. Trans. Roy. Soc., 186 (1895).

  18. V. Starr, Physics of Phenomena with Negative Viscosity [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  19. F. Forkheimer, Hydraulics [in Russian], Otdel Nauchno-Tekhnicheskoi Informatsii, Moscow – Leningrad (1935).

    Google Scholar 

  20. N. A. Slezkin, Dynamics of a Viscous Incompressible Fluid [in Russian], Izd-vo Tekhniko-Teoreticheskoi Literatury, Moscow (1955).

    Google Scholar 

  21. S. A. Maslow, Instability and Transition in Shear Flows, Hydrodynamic Instabilities and Transition to Turbulence [Russian translation], Moscow (1984).

  22. E. M. Khabakhpasheva, Problems of Thermophysics and Physical Hydrodynamics [in Russian] (1974).

  23. A. Gur and A. Schmid, “Turbulent flows over smooth credible sand beds in flumes,” J. Hydraulic Res., 35(4) (1997).

  24. T. E. Stanton and I. R. Pannel, “Similarity of motion in relation to the surface friction in fluids,” Phil. Trans. Roy. Soc., A214 (1914).

  25. H. Darcy, Recherches Experimentales Relatives aux Movement de Leau Dans les Tuyaux des Conduits, Paris (1858).

  26. A. A. Townsend, Structure of a Turbulent Flow with Transverse Shear [Russian translation], Inostrannaya Literatura, Moscow (1959).

    Google Scholar 

  27. J. Laufer, “The structure of turbulence in fully developed pipe flow,” NASA Rep. No. 1174 (1954).

  28. W. Nunner, “Warmeubergang und drckabfall in rauhen rohren,” VDI Forschungsheft, No. 455 (1956).

  29. L. I. Vysotskii, “A new representation of the coefficient of turbulent viscosity as a base for analysis of turbulence parameters,” in: Refinement of Methods of Hydraulic Calculations of Water-Carrying and Purification Structures: Int. Sci. Collection [in Russian], Izd. SGTU, Saratov (1998).

    Google Scholar 

  30. E. R. Sorino and R. S. Brodky, “A visual investigation of the wall redion in turbulent flow,” J. Fluid Mech., 37(Part 1) (1969).

  31. M. V. Zagarola, http://www.princeton.edu/~gasdyn/

  32. J. Osterlund, http://www.mech.kth.se/~jens/zpg/, Stockholm, Sweden (1999).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Gidrotekhnicheskoe Stroitel’stvo, No. 1, January 2009, pp. 42–48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vysotskii, L.I., Vysotskii, I.S. Hydraulic analysis of averaged parameters of turbulent flows in circular pipes and plane channels. Power Technol Eng 43, 85–90 (2009). https://doi.org/10.1007/s10749-009-0079-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10749-009-0079-2

Keywords

Navigation