Skip to main content
Log in

Human Systemic Reactions to a Dosed Exposure to Hypoxia: A Multiparameter Study

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Human physiological reactions to acute hypoxic hypoxia were studied. Analysis of simultaneously recorded parameters of various physiological systems showed the following: activation of the general antihypoxic defense system is based on the formation of an intricate structure of intra- and intersystemic relations of specific and nonspecific elements of adaptation that support vital body functions during environmental oxygen deficit. These specific elements become more important in more severe hypoxia, which suppresses metabolism in some organs and tissues because of redistribution of blood flow. These factors allow the body to function at a lower oxygen tension in its tissues owing to an increased efficiency of mitochondria as a result of changes in the kinetics of enzymes of the mitochondrial respiratory chain. In acute hypoxia, the structure of intra- and intersystemic relations is rather intricate; its functional hierarchy is maintained by stronger individual amplitude-related controlling factors and by modulation of their phase- and time-related links. Advanced stages of hypoxia are associated with disintegration of central regulatory mechanisms, which is manifested by disturbances in amplitude-frequency and spatiotemporal parameters of the brain bioelectrical activity, changes in phasic interactions between elements of regulatory mechanisms, and signs of deregulation and decompensation of vital functions. The interpretation of the results is based on the general theory of adaptation, Medvedev's idea of adaptation as a successive involvement of genetically predetermined and newly-formed regulatory programs of the brain, Anokhin's theory of functional systems, and modern concepts of molecular and biochemical mechanisms of hypoxia. It was concluded that artificial normobaric hypoxia is a unique, biologically adequate model that makes it possible to study the rearrangements in systemic and autonomic regulatory mechanisms in response to strictly determined changes in the environmental concentration of oxygen as a principal factor supporting life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Luk'yanova, L.D., Mitochondrial Dysfunction As a Typical Pathological Process and Molecular Mechanism of Hypoxia, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological, and Medical Aspects), Luk'yanova, L.D. and Ushakov, I.B., Eds., Moscow: Istoki, 2004, p. 8.

    Google Scholar 

  2. Medvedev, V.I., Adaptatsiya (Adaptation), St. Petersburg: Inst. Mozga Chel., 2003.

    Google Scholar 

  3. Soroko, S.I. and Burykh, E.A., Intrasystemic and Intersystemic Rearrangements of Physiological Parameters in Experimental Acute Hypoxia, Fiziol. Chel., 2004, vol. 30, no.2, p. 58.

    Google Scholar 

  4. Volkov, Yu.N., Bol'shov, V.M., Singaevskii, S.B., et al., Kompleksnaya otsenka funktsional'nogo sostoyaniya sistem krovoobrashcheniya i dykhaniya metodom integral'noi reografii tela (Comprehensive Assessment of the Functional State of the Vascular and Respiratory Systems by Means of Integral Rheography of the Body), Moscow, 1989.

  5. Jenkins, G.M. and Watts, D.G., Spectral Analysis and Its Applications, Merrifield: Holden-Day, 1968.

    Google Scholar 

  6. Urbakh, V.Yu., Biometricheskie metody (Biometrical Methods), Moscow: Nauka, 1964.

    Google Scholar 

  7. Bekshaev, S.S., Komp'yuternaya programma “Trekhmernaya lokalizatsiya elektricheskikh istochnikov golovnogo mozga, porozhdayushchikh prostranstvenno-vremennoi profil' electroentsefalogrammy (3DLocEEG)” (A 3DLocEEG Computer Software: Three-Dimensional Localization of Cerebral Electrical Sources Generating the Spatiotemporal Profile of the Electroencephalogram”), RF state license no. 2002611116, July 2, 2002.

  8. Gnezditskii, V.V., Koptelov, Yu.M., and Novozhilov, V.I., Capabilities of the Three-Dimensional Localization of EEG Sources Based on the Equivalent Dipole Model, Zh. Vyssh. Nervn. Deyat., 1981, vol. 31, no.2, p. 323.

    Google Scholar 

  9. Malkin, V.B. and Gippenreiter, E.B., Ostraya i khronicheskaya gipoksiya (Acute and Chronic Hypoxia), Moscow: Nauka, 1977.

    Google Scholar 

  10. Akopyan, N.S. and Baklavadzhyan, O.G., Changes in the Oxygen Tension and Cerebral Bioelectrical Activity in Animals during Acute Hypoxia, Fiziol. Zh. SSSR, 1975, vol. 61, no.9, p. 1303.

    PubMed  Google Scholar 

  11. Soroko, S.I., Rearrangements of Human Integrative Mechanisms Regulating the Physiological Functions during Experimental and High-Altitude Hypoxia, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological, and Medical Aspects), Luk'yanova, L.D. and Ushakov, I.B., Eds., Moscow: Istoki, 2004, p. 8.

    Google Scholar 

  12. Soroko, S.I. and Dzhunusova, G.S., Effects of Experimental and High-Altitude Hypoxia on the Bioelectrical Processes of Various Cerebral Structures and Intercentral Relations, Fiziol. Chel., 1997, vol. 23, no.3, p. 11.

    Google Scholar 

  13. Zakharova, E.I., Savinov, M.M., Germanova, E.N., et al., Mechanisms of the Involvement of Cholinergic Systems in Morphofunctional Reorganization of the Neocortex and Hippocampus during Hypoxia, in Problemy gipoksii: molekulyarnye, fiziologicheskie i meditsinskie aspekty (Problems of Hypoxia: Molecular, Physiological, and Medical Aspects), Luk'yanova, L.D. and Ushakov, I.B., Eds., Moscow: Istoki, 2004, p. 268.

    Google Scholar 

  14. Vinogradova, O.S., Gippokamp i pamyat' (Hippocampus and Memory), Moscow: Nauka, 1975.

    Google Scholar 

  15. Elhusseiny, A., Cohen, Z., Olivier, A., et al., Functional Acetylcholine Muscarinic Receptor Subtypes in Human Brain Microcirculation: Identification and Cellular Localization, J. Cerebr. Blood Flow Metab., 1999, vol. 25, no.2, p. 794.

    Google Scholar 

  16. Malkin, V.B., Razumeev, A.N., and Izosimov, T.V., Study of the Bioelectrical Activity of the Cerebral Cortex and Some Subcortical Structures in Acute Hypoxia, in Kislorodnaya nedostatochnost' (Oxygen Deficiency), Kiev, 1963, p. 104.

  17. Soroko, S.I., Bekshaev, S.S., and Sidorov, Yu.A., Osnovnye tipy mekhanizmov samoregulyatsii mozga (Basic Types of Cerebral Self-Regulatory Mechanisms), Leningrad: Nauka, 1990.

    Google Scholar 

  18. Bekshaev, S.S., Vasilevskii, N.N., Suvorov, N.B., et al., Combinatorial Approach to the Analysis of the Statistical Interdependence of Encephalographic Rhythms, in Adaptivnye reatsii mozga i ikh prognozirovanie (Adaptive Reactions of the Brain and Their Prediction), Leningrad, 1978, p. 117.

  19. Rusinov, V.S., Dominanta. Elektrofiziologicheskie issledovaniya (The Dominant: Electrophysiological Studies), Moscow: Meditsina, 1969.

    Google Scholar 

  20. Livanov, M.N. Prostranstvennaya organizatsiya protsessov golovnogo mozga (Spatial Organization of Cerebral Processes), Moscow: Nauka, 1972.

    Google Scholar 

  21. Suzuki, H., Distribution and Interregional Relationships of the Scalp α Rhythm, J. Physiol. Soc. Jap., 1974, vol. 36, no.6, p. 203.

    PubMed  Google Scholar 

  22. Shepoval'nikov, A.N., Tsitseroshin, M.N., and Apanasionok, V.S., Formirovanie biopotentsial'nogo polya cheloveka (Generation of the Human Biopotential Field), Leningrad: Nauka, 1979.

    Google Scholar 

  23. Sviderskaya, N.E. and Shlitner, L.M., Coherent Structures of Cerebral Cortical Electrical Activity, Fiziol. Chel., 1990, vol. 16, no.3, p. 12.

    Google Scholar 

  24. Thatcher, R.W., Krause, P.J., and Hrybyk, M., Cortico-Cortical Association Fibers and EEG Coherence: A Two-Compartmental Model, EEG Clin. Neurophysiol., 1986, no. 64, p. 123.

  25. Alferova, V.V. and Farber, D.A., Otrazhenie vozrastnykh osobennostei funktsional'noi organizatsii mozga v elektroentsefalogramme pokoya (Age-Related Features of the Cerebral Functional Organization Reflected in the Rest Electroencephalogram), Leningrad: Nauka, 1990.

    Google Scholar 

  26. Boldyreva, G.N., Sharova, E.V., and Dobronravova, I.S., The Role of Cerebral Regulatory Structures in the Generation of Human EEG, Fiziol. Chel., 2000, vol. 26, no.5, p. 19.

    Google Scholar 

  27. Bekhtereva, N.P., Neirofiziologicheskie aspekty psikhicheskoi deyatel'nosti cheloveka (Neurophysiological Aspects of Human Mental Activity), Leningrad: Nauka, 1974.

    Google Scholar 

  28. Dubikaitis, V.V., A Possible Role of the Thalamic Pacemaker in the Spatiotemporal Organization of the EEG, Fiziol. Chel., 1975, vol. 1, no.5, p. 771.

    Google Scholar 

  29. Kotel'nikov, S.A., Nozdrachev, A.D., Odinak, M.M., et al., Heart Rhythm Variability: Concepts of Mechanisms, Fiziol. Chel., 2002, vol. 28, no.1, p. 130.

    Google Scholar 

  30. Beregovkin, A.V., Buyanov, P.V., and Malkin, V.B., Respiration and Gas Exchange in an Acute Hypoxic Test, in Aviatsionnaya i kosmicheskaya meditsina (Air and Space Medicine), Moscow: Nauka, 1963, p. 72.

    Google Scholar 

  31. Kolchinskaya, A.Z., Kislorodnye rezhimy organizma rebenka i podrostka (Oxygen Regimens in Children and Adolescents), Kiev: Naukova Dumka, 1973.

    Google Scholar 

  32. Pearce, W.J., Mechanisms of Hypoxic Cerebral Vasodilatation, Pharm. Ther., 1995, vol. 65, p. 75.

    Article  Google Scholar 

  33. Nesterov, C.V., Effects of Acute Experimental Hypoxia on the Cerebral Blood Flow and Autonomic Regulation of the Cardiac Rhythm in Humans, Extended Abstract of Cand. Sci. (Med.) Dissertation, St. Petersburg, 2004.

  34. Livanov, M.N. and Anan'ev, V.M., Elektroentsefaloskopiya (Electroencephaloscopy), Moscow: Medgiz, 1960.

    Google Scholar 

  35. Anokhin, P.K., Ocherki po fiziologii funktsional'nykh sistem (Essays on the Physiology of Functional Systems), Moscow: Meditsina, 1975.

    Google Scholar 

  36. Sudakov, K.V., Obshchaya teoriya funktsional'nukh sistem (A General Theory of Functional Systems), Moscow, 1984.

  37. Cannon, W.B., The Wisdom of the Body, New York: Norton, 1939.

    Google Scholar 

  38. Breslav, I.S. and Glebovskii, V.D., Regulyatsiya dykhaniya (Regulation of Breathing), Leningrad: Nauka, 1981.

    Google Scholar 

  39. Marshak, M.E., Fiziologicheskoe znachenie uglekisloty (Physiological Significance of Carbon Dioxide), Moscow: Meditsina, 1969.

    Google Scholar 

  40. Galantsev, V.P., Evolyutsiya adaptatsii nyryayushchikh zhivotnykh (Evolution of Adaptation of Diving Animals), Leningrad: Nauka, 1977.

    Google Scholar 

  41. Ivanov, K.P. Osnovy energetiki organisma (Fundamentals of Organism Energetics), St. Petersburg: Nauka, 1993, vol. 2.

    Google Scholar 

  42. Kety, S.S. and Schmidt, C.F., Effects of Altered Arterial Tensions of Carbon Dioxide and Oxygen on Cerebral Blood Flow and Cerebral Oxygen Consumption of Normal Young Men, J. Clin. Invest., 1948, vol. 27, no.4, p. 484.

    Google Scholar 

  43. Slonim, A.D., Chastnaya ekologicheskaya fiziologiya mlecopitayushchikh (Particular Ecological Physiology of Mammals), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  44. Barbashova, Z.I., Akklimatizatsiya k gipoksii i fiziologicheskie mekhanizmy (Acclimatization to Hypoxia and Physiological Mechanisms), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  45. Creutzfeldt, O., Bark, J., and Fromm, G.H., Cerebral Anoxia and Electroencephalogram, Gastaut, H., Ed., Springfield: Meyer, 1961, p. 35.

    Google Scholar 

  46. Beritashvili, I.S., Struktura i funktsii kory golovnogo mozga (Structure and Functions of Cerebral Cortex), Moscow: Nauka, 1969.

    Google Scholar 

  47. Gurvich, A.M., Elektricheskaya aktivnost' umirayushchego i ozhivayushchego mozga (Electrical Activity of the Dying and Reviving Brain), Leningrad: Meditsina, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Cheloveka, Vol. 31, No. 5, 2005, pp. 88–109.

Original Russian Text Copyright © 2005 by Soroko, Burykh, Bekshaev, Sergeeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soroko, S.I., Burykh, E.A., Bekshaev, S.S. et al. Human Systemic Reactions to a Dosed Exposure to Hypoxia: A Multiparameter Study. Hum Physiol 31, 573–591 (2005). https://doi.org/10.1007/s10747-005-0099-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10747-005-0099-8

Keywords

Navigation