Skip to main content

Advertisement

Log in

Risk, Reliability, and the Importance of Small-Bodied Molluscs across the Hawaiian Windward-Leeward Divide

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

The windward-leeward dichotomy is an important biogeographical distinction when investigating prehistoric island colonisation, settlement patterns, site use, and subsistence regimes. We analysed the mollusc remains from late prehistoric windward and leeward coastal midden sites from Moloka‘i, Hawaiian Islands, to understand exploitation strategies in differing environmental contexts. Analysis of molluscan remains and their associated habitats, through a patch-choice framework, indicated that, instead of practicing different foraging regimes relative to their location, windward and leeward groups targeted small Neritidae gastropods from habitats adjacent to their home site. Despite the broad environmental differences, similar subsistence strategies may have been adopted for multiple reasons. In our windward-leeward assemblages, we suggest that mollusc size is not the paramount driver of forager decision making. Through a foraging theory lens, mollusc rank is reinterpreted beyond body size in response to prey-specific biological and ecological factors, such as aggregation and predictability. We also consider that targeted exploitation of stable, reliable, and resilient prey populations may instead be indicative of a risk management strategy in marginal, high variance environments. The best explanation may be a combination of both interpretations–where the risk sensitive forager ranks prey by a different set of optimality criteria that includes targeting high-density clusters of small gastropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert, S., Flores, O., Rouget, M., Wilding, N., & Strasberg, D. (2018). Why are woody plants fleshy fruited at low elevations? Evidence from a high-elevation oceanic island. Journal of Vegetation Science, 29(5), 847–858.

    Google Scholar 

  • Allee, R. J., Dethier, M., Brown, D., Deegan, L., Ford, R. G., Hourigan, T. F., Maragos, J., Schoch, C., Sealey, K., Twilley, R., Weinstein, M. P., & Yoklavich, M. (2000). Marine and estuarine ecosystem and habitat classification. NOAA technical memorandum NMFS-F/SPO-43. National Marine Fisheries Service.

    Google Scholar 

  • Allen, M. S. (2004). Bet-hedging strategies, agricultural change, and unpredictable environments: Historical development of dryland agriculture in Kona. Hawaii. Journal of Anthropological Archaeology, 23, 196–224.

    Google Scholar 

  • Anderson, A. J. (1981). A model of prehistoric collecting on the rocky shore. Journal of Archaeological Science, 8, 109–120.

    Google Scholar 

  • Anderson, A., Chappell, J., Gagan, M., & Grove, R. (2006). Prehistoric maritime migration in the Pacific Islands: An hypothesis of ENSO forcing. The Holocene, 16, 1–6.

    Google Scholar 

  • Athens, J. S. (1985). Prehistoric investigations at an upland site on the leeward slopes of central Moloka‘i. International Archaeological Research Institute Inc.

    Google Scholar 

  • Axelsen, F. (1968). Growth rate study of some tropical marine invertebrates. Master of Science thesis. McGill University Montreal, Quebec, Canada.

  • BAE Systems. (2007). Mapping of benthic habitats for the Main eight Hawaiian islands: Task order 1 project completion report. Report prepared for National Centers for Coastal Ocean science (NCCOS) by BAE Systems sensor solutions Identification & Surveillance (S2 IS), Honolulu, HI. Available: https://coastalscience.noaa.gov/publications/detail.aspx?resource=OO8xJTsOqtE3HOmSJPBRevnKPCawk0DWldT9gb+ACLE=. Accessed June 2020.

  • Bar-Yosef Mayer, D. (2017). The exploitation of aquatic resources during the quaternary. In Y. Enzel & O. Bar-Yosef (Eds.), Quaternary of the Levant: Environments, climate change, and humans (pp. 377–380). Cambridge University Press.

    Google Scholar 

  • Bawden, G., & Reycraft R. M. (2000). Environmental disaster and the archaeology of human response. Anthropological paper no. 7. Maxwell Museum of Anthropology, Albuquerque, USA.

  • Bayman, J. M., & Dye, T. S. (2013). Hawaii’s past in a world of Pacific Islands. Society for American Archaeology.

    Google Scholar 

  • Bedford, S. (2007). Pieces of the Vanuatu puzzle: Archaeology of the north, south and Centre. Terra Australis 23. ANU E Press.

    Google Scholar 

  • Bird, D. W., & O’Connell, J. F. (2006). Behavioral ecology and archaeology. Journal of Archaeological Research, 14, 143–188.

    Google Scholar 

  • Bird, D. W., Richardson, J. L., Veth, P. M., & Barham, A. J. (2002). Explaining shellfish variability in middens on the Meriam Islands, Torres Strait. Australia. Journal of Archaeological Science, 29(5), 457–469.

    Google Scholar 

  • Bliege Bird, R., Bird, D. W., Smith, E. A., & Kushnick, G. C. (2002). Risk and reciprocity in Meriam food sharing. Evolution and Human Behavior, 23, 297–321.

    Google Scholar 

  • Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H., & Jones, J. H. (2008). The “fire stick farming” hypothesis: Australian aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proceedings of the National Academy of Sciences, 105, 14796–14801.

    Google Scholar 

  • Bowdler, S. (2014). Shell middens and molluscs. In Balme, J., and Paterson, A. (eds.), Archaeology in Practice, pp. 361–381. Blackwell Publishing, London.

  • Braje, T. J. (2010). Ancient oceans, modern sites: Archaeology and marine conservation on San Miguel Island. University of Utah Press, Salt Lake City.

    Google Scholar 

  • Branch, G. M. (1984). Competition between marine organisms: Ecological and evolutionary implications. Oceanography and Marine Biology. Annual Review, 22, 429–593.

    Google Scholar 

  • Broughton, J. M. (1994). Declines in mammalian foraging efficiency during the Late Holocene, San Francisco Bay, California. Journal of Anthropological Archaeology, 13, 371–401.

    Google Scholar 

  • Broughton, J.M. (1999). Resource depression and intensification during the Late Holocene, San Francisco Bay: Evidence from the Emeryville Shellmound vertebrate fauna. University of California Publications, Anthropological Records 32, Berkeley, California.

  • Broughton, J. M. (2002). Prey spatial structure and behavior affect archaeological tests of optimal foraging models: Examples from the Emeryville Shellmound vertebrate fauna. World Archaeology, 34(1), 60–83.

    Google Scholar 

  • Broughton, J. M., & O’Connell, J. F. (1999). On evolutionary ecology, selectionist archaeology, and behavioral archaeology. American Antiquity, 64(1), 153–165.

    Google Scholar 

  • Broughton, J. M., Cannon, M. D., Bayham, R. E., & Byers, D. A. (2011). Prey body size and ranking in zooarchaeology: Theory, empirical evidence, and applications from the northern Great Basin. American Antiquity, 76(3), 403–428.

    Google Scholar 

  • Bush, M. B., & Silman, M. R. (2007). Amazonian exploitation revisited: Ecological asymmetry and the policy pendulum. Frontiers in Ecology and the Environment, 5(9), 457–465.

    Google Scholar 

  • Butler, V. L., & Campbell, S. K. (2004). Resource intensification and resource depression in the Pacific northwest of North America: A zooarchaeological review. Journal of World Prehistory, 18(4), 327–405.

    Google Scholar 

  • Campbell, C. R., & Schmidt, L. (2001). Molluscs and echinoderms from the Emily Bay settlement site, Norfolk Island. In Anderson, A., and White, P. (eds.), The prehistoric archaeology of Norfolk Island, Southwest Pacific, pp. 109–114. Records of the Australian Museum, supplement 27. Australian Museum, Sydney.

  • Cappers, R. T. J., & Raemaekers, D. C. M. (2008). Cereal cultivation at Swifterbant? Neolithic wetland farming on the north European plain. Current Anthropology, 49, 385–402.

    Google Scholar 

  • Catterall, C. P., & Poiner, I. R. (1987). The potential impact of human gathering on shellfish populations, with reference to some NE Australian intertidal flats. Oikos, 50(1), 114–122.

    Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging: The marginal value theorem. Theoretical Population Biology, 9, 129–136.

    Google Scholar 

  • Charnov, E., & Orians, G. H. (2006). Optimal foraging: Some theoretical explorations. Digital Repository. The University of New Mexico, New Mexico, USA. Available: https://digitalrepository.unm.edu/biol_fsp/45. Accessed January 2021.

  • Charnov, E. L., Orians, G. H., & Hyatt, K. (1976). Ecological implications of resource depression. American Naturalist, 110, 247–259.

    Google Scholar 

  • Chislett, G.R. (1969). Comparative aspects of the ecology of three Nerita (Mollusca: Gastropoda), Species from different locations in Barbados. Master of science thesis. McGill University, Montreal, Quebec, Canada.

  • Claassen, C. (1998). Shells. Cambridge University Press.

    Google Scholar 

  • Clark, G., & Szabó, K. (2009). The fish bone remains. In G. Clark & A. Anderson (Eds.), The early prehistory of Fiji (pp. 214–230). ANU Press.

    Google Scholar 

  • Codding, B. F., & Bird, D. W. (2015). Behavioral ecology and the future of archaeological science. Journal of Archaeological Science, 56, 9–20.

    Google Scholar 

  • Codding, B. F., O’Connell, J. F., & Bird, D. W. (2014). Shellfishing and the colonization of Sahul: A multivariate model evaluating the dynamic effects of prey utility, transport considerations and life-history on foraging patterns and midden composition. The Journal of Island and Coastal Archaeology, 9(2), 238–252.

    Google Scholar 

  • Colwell, R. (2009). Biodoversity: Concepts, patterns, and measurements. In S. A. Levin (Ed.), The Princeton guide to ecology (pp. 257–263). Princeton University Press.

    Google Scholar 

  • Costa-Pierce, B. A. (1987). Aquaculture in ancient Hawaii. BioScience, 37(5), 320–331.

    Google Scholar 

  • Coyne, M.S., Battista, T.A., Anderson, M., Waddell, J., Smith, W., Jokiel, P., Kendall, M.S., & Monaco, M.E. (2003). Benthic habitats of the Main Hawaiian islands. NOAA technical memorandum NOS NCCOS CCMA 152. National Oceanic and Atmospheric Administration, Silver Spring, MD.

  • DiNapoli, R. J., & Morrison, A. E. (2017). Human behavioural ecology and Pacific archaeology. Archaeology in Oceania, 52(1), 1–12.

    Google Scholar 

  • Discamps, E., Jaubert, J., & Bachellerie, F. (2011). Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5-3) in southwestern France. Quaternary Science Reviews, 30(19–20), 2755–2775.

    Google Scholar 

  • Earle, T. K. (1977). A reappraisal and redistribution: Complex Hawaiian chiefdoms. In T. K. Earle & J. E. Ericson (Eds.), Exchange Systems in Prehistory (pp. 213–229). Academic Press.

    Google Scholar 

  • Eichhorst, T. E. (2016). Neritidae of the world. ConchBooks.

    Google Scholar 

  • Ember, C. R., & Ember, M. (1992). Resource unpredictability, mistrust, and war. Journal of Conflict Resolution, 36, 242–262.

    Google Scholar 

  • Engels, M. S., Fletcher, C. H., Field, M. E., Storlazzi, C. D., Grossman, E. E., Rooney, J. J. B., Conger, C. L., & Glenn, G. (2004). Holocene reef accretion: Southwest Molokai, Hawaii, USA. Journal of Sedimentary Research, 74(2), 255–269.

    Google Scholar 

  • Eren, M. I., & Andrews, B. N. (2013). Were bifaces used as mobile cores by Clovis foragers in the north American lower Great Lakes region? An archaeological test of experimentally derived quantitative predictions. American Antiquity, 78(1), 166–180.

    Google Scholar 

  • Erlandson, J. M., & Rick, T. C. (2010). Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Annual Review of Marine Science, 2, 231–251.

    Google Scholar 

  • Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas cave, western cape, South Africa. Journal of Human Evolution, 65(6), 715–730.

    Google Scholar 

  • Faulkner, P., Harris, M., Haji, O., Ali, A. K., Crowther, A., Shipton, C., Horton, M. C., & Boivin, N. L. (2019). Long-term trends in terrestrial and marine invertebrate exploitation on the eastern African coast: Insights from Kuumbi cave, Zanzibar. The Journal of Island and Coastal Archaeology, 14(4), 479–514.

    Google Scholar 

  • Field, J. S. (2005). Land tenure, competition and ecology in Fijian prehistory. Antiquity, 79(305), 586–600.

    Google Scholar 

  • Field, J. S., & Lape, P. V. (2010). Paleoclimates and the emergence of fortifications in the tropical Pacific islands. Journal of Anthropological Archaeology, 29, 113–124.

    Google Scholar 

  • Field, M. E., Cochran, S. A., Logan, J. B., & Storlazzi, C. D. (2008). The coral reef of south Moloka’i, Hawai’i; portrait of a sediment-threatened fringing reef. US Geological Survey Scientific Investigations Report, 2007–5101 Available: https://pubs.usgs.gov/sir/2007/5101/

  • Field, J. S., Lipphardt, J. N., & Kirch, P. V. (2016). Trends in marine foraging in precontact and historic leeward Kohala, Hawai‘I Island. Pacific Science, 70(3), 287–307.

    Google Scholar 

  • Fielding, A. (1998). Hawaiian reefs and Tidepools: A guide to Hawaii’s shallow-water invertebrates. Island Explorations, Makawao.

  • Fierstein, E., and Fletcher, C.H. (2004). Hawaii's coastline: Chapter for the World's coastline. School of Ocean and Earth Science and technology (SOEST), The University of Hawai‘i at Manoa. Available at: http://www.soest.hawaii.edu/coasts/publications/hawaiiCoastline/HawaiisCoastline.pdf.

  • Fletcher, C.H., Grossman, E.E., Richmond, B.M., & Gibbs, A.E. (2002). Atlas of natural hazards in the Hawaiian coastal zone. USGS geologic investigations series I-2761. United States Printing Office, Denver.

  • Fletcher, C. H., Murray-Wallace, C. V., Glenn, C. R., Sherman, C. E., Popp, B., & Hessler, A. (2005). Age and origin of Late Quaternary eolianite, Kaiehu point (Moomomi), Molokai. Hawaii. Journal of Coastal Research, 42, 97–112.

    Google Scholar 

  • Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialisation. Annual Review of Ecology and Systematics, 19(1), 207–233.

    Google Scholar 

  • Giambelluca, T. W., Nullet, M. A., & Schroeder, T. A. (1986). Rainfall atlas of Hawai‘i, report R76. Report prepared for division of water and land development, Department of Land and Natural Resources, state of Hawaii, Honolulu. Available: https://files.hawaii.gov/dlnr/cwrm/publishedreports/R76_Rainfall.pdf. Accessed February 2021.

  • Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen, Y.-L., Chu, P.-S., Eischeid, J. K., & Delparte, D. M. (2013). Online rainfall atlas of Hawai‘i. Bulletin of the American Meteorological Society, 94, 313–316 Available: http://rainfall.geography.hawaii.edu/rainfall.html. Accessed June 2020

    Google Scholar 

  • Giovas, C. M. (2006). No pig atoll: Island biogeography and the extirpation of a Polynesian domesticate. Asian Perspectives, 45(1), 69–95.

    Google Scholar 

  • Giovas, C. M. (2009). The shell game: Analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36(7), 1557–1564.

    Google Scholar 

  • Giovas, C.M. (2013). Foraging variability in the prehistoric Caribbean: Multiple foraging optima, resource use, and anthropogenic impacts on Carriacou, Grenada. PhD thesis. University of Washington, Seattle, USA.

  • Giovas, C. M. (2016). Though she be but little: Resource resilience, Amerindian foraging, and long-term adaptive strategies in the Grenadines, West Indies. The Journal of Island and Coastal Archaeology, 11(2), 238–263.

    Google Scholar 

  • Giovas, C. M., Fitzpatrick, S. M., Clark, M., & Abed, M. (2010). Evidence for size increase in an exploited mollusc: Humped conch (Strombus gibberulus) at Chelechol ra Orrak, Palau from ca. 3000–0 BP. Journal of Archaeological Science, 37, 2788–2798.

    Google Scholar 

  • Giovas, C. M., Clark, M., Fitzpatrick, S. M., & Stone, J. (2013). Intensifying collection and size increase of the tessellated nerite snail (Nerita tessellata) at the coconut walk site, Nevis, northern Lesser Antilles, AD 890-1440. Journal of Archaeological Science, 40, 4024–4038.

    Google Scholar 

  • Giovas, C. M., Fitzpatrick, S. M., Kataoka, O., & Clark, M. (2016). Prey body size and anthropogenic resource depression: The decline of prehistoric fishing at Chelechol ra Orrak, Palau. Journal of Anthropological Archaeology, 41, 132–146.

    Google Scholar 

  • Goto, A. (1986). Prehistoric ecology and economy of fishing in Hawaii: An ethnoarchaeological approach. PhD thesis. Anthropology Department, University of Hawaii, Honolulu, USA.

  • Gould, R. A. (1991). Arid-land foraging as seen from Australia: Adaptive models and behavioral realities. Oceania, 62(1), 12–33.

    Google Scholar 

  • Grayson, D. K., & Cannon, M. D. (1999). Human paleoecology and foraging theory in the Great Basin. In C. Beck (Ed.), Models for the millennium (pp. 141–151). University of Utah.

    Google Scholar 

  • Gremillion, K. J. (1996). Diffusion and adoption of crops in evolutionary perspective. Journal of Anthropological Archaeology, 15, 183–204.

    Google Scholar 

  • Gulko, D. (1998). Hawaiian coral reef ecology. Mutual Publishing.

    Google Scholar 

  • Halstead, P., & O’Shea, J. (1989). Introduction: Cultural responses to risk and uncertainty. In P. Halstead & J. O’Shea (Eds.), Bad year economics: Cultural responses to risk and uncertainty (pp. 1–7). Cambridge University Press.

    Google Scholar 

  • Hames, R. B., & Vickers, W. T. (1982). Optimal diet breadth theory as a model to explain variability in Amazonian hunting. American Ethnologist, 9, 258–278.

    Google Scholar 

  • Hammer, Ø. (2001). PAST PAleontological STatistics, version 3.04. Natural History Museum. University of Oslo.

    Google Scholar 

  • Harris, M., & Weisler, M. (2017). Intertidal foraging on atolls: Prehistoric forager decision-making at ebon atoll, Marshall Islands. The Journal of Island and Coastal Archaeology, 12(2), 200–223.

    Google Scholar 

  • Harris, M., & Weisler, M. (2018). Two millennia of mollusc foraging on ebon atoll, Marshall Islands: Sustained marine resource use on a Pacific atoll. Archaeology in Oceania, 53(1), 41–57.

    Google Scholar 

  • Harris, M., Weisler, M., & Faulkner, P. (2015). A refined protocol for calculating MNI in archaeological molluscan shell assemblages: A Marshall Islands case study. Journal of Archaeological Science, 57, 168–179.

    Google Scholar 

  • Harris, M., Lambrides, A. B. J., & Weisler, M. I. (2016). Windward vs. leeward: Inter-site variation in marine resource exploitation on ebon atoll, Republic of the Marshall Islands. Journal of Archaeological Science: Reports, 6, 221–229.

    Google Scholar 

  • Hayek, L.-A. C., & Buzas, M. A. (2010). Surveying natural populations. Columbia University Press.

    Google Scholar 

  • Heip, C. H. R., Herman, P. M. J., & Soetaert, K. (1998). Indices of diversity and evenness. Océanis, 24(4), 61–87.

    Google Scholar 

  • Holthus, P. F., & Maragos, J. E. (1995). Marine ecosystem classification for the tropical island Pacific. In J. E. Maragos, M. N. A. Peterson, L. G. Eldredge, J. E. Bardach, & H. F. Takeuchi (Eds.), Marine and coastal biodiversity in the Tropical Island Pacific region (pp. 239–278). East-West Center.

    Google Scholar 

  • Hommon, R. J. (1986). Social evolution in ancient Hawaii. In P. V. Kirch (Ed.), Island societies: Archaeological approaches to evolution and transformation (pp. 55–68). Cambridge University Press.

    Google Scholar 

  • Hommon, R. J. (2010). Watershed: Testing the limited land hypothesis. In T. Dye (Ed.), Research designs for Hawaiian archaeology: Agriculture, architecture, methodology (pp. 1–92). Society for Hawaiian Archaeology.

    Google Scholar 

  • Hommon, R. J. (2013). The ancient Hawaiian state: Origins of a political society. Oxford University Press.

    Google Scholar 

  • Hongo, C., & Kayanne, H. (2009). Holocene coral reef development under windward and leeward locations at Ishigaki Island, Ryukyu Islands, Japan. Sedimentary Geology, 214, 62–73.

    Google Scholar 

  • Hoover, J. P. (1998). Hawai‘i’s sea creatures: A guide to Hawai‘i’s marine invertebrates. Mutual Publishing.

    Google Scholar 

  • Hopkins, M. J., Simpson, C., & Kiessling, W. (2014). Differential niche dynamics among major marine invertebrate clades. Ecology Letters, 17(3), 314–323.

    Google Scholar 

  • Howe, E. L., Murphy, J. J., Gerkey, D., & West, C. T. (2016). Indirect reciprocity, resource sharing, and environmental risk: Evidence from field experiments in Siberia. PLoS One, 11(7), e0158940.

    Google Scholar 

  • Irwin, G. (1994). The prehistoric exploration and colonisation of the Pacific. Cambridge University Press.

    Google Scholar 

  • Jones, E. L. (2006). Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). Journal of Anthropological Archaeology, 25(3), 275–289.

    Google Scholar 

  • Kay, E. A. (1979). Hawaiian marine shells. Reef and shore Fauna of Hawaii. Section 4: Mollusca. Bishop Museum Press.

    Google Scholar 

  • Kendall, M. S., Kruer, C. R., Buja, K. R., Christensen, J. D., Finkbeiner, M., & Monaco, M. E. (2001). Methods used to map the benthic habitats of Puerto Rico and the U.S. Virgin Islands. National Ocean Service, Center for Coastal Monitoring and Assessment, biogeography program, Silver Spring, MD.

  • Kendall, M. S., Battista, T. A., & Menza, C. (2012). Majuro atoll, Republic of the Marshall Islands coral reef ecosystems mapping report. NOAA National Centers for Coastal Ocean science. Silver Spring, MD.

  • Kennett, D. J., & Kennett, J. P. (2000). Competitive and cooperative responses to climatic instability in coastal Southern California. American Antiquity, 65, 379–396.

    Google Scholar 

  • Kikuchi, W. K. (1976). Prehistoric Hawaiian fishponds. Science, 193, 295–299.

    Google Scholar 

  • Kim, J. (2010). Opportunistic versus target mode: Prey choice changes in central-western Korean prehistory. Journal of Anthropological Archaeology, 29, 80–93.

    Google Scholar 

  • Kirch, P. (1982). The ecology of marine exploitation in prehistoric Hawaii. Human Ecology, 10(4), 455–476.

    Google Scholar 

  • Kirch, P. V. (1994). The wet and the dry: Irrigation and agricultural intensification in Polynesia. University of Chicago Press.

    Google Scholar 

  • Kirch, P.V. (2017). On the road of the winds: An archaeological history of the Pacific Islands before European contact. Revised edn. University of California Press.

  • Kirch, P. V., & Dye, T. S. (1979). Ethno-archaeology and the development of Polynesian fishing strategies. Journal of the Polynesian Society, 88(1), 53–76.

    Google Scholar 

  • Kirch, P. V., & Kelly, M. (Eds.). (1975). Prehistory and ecology in a windward Hawaiian valley: Halawa Valley, Molokai. Pacific anthropological records 24. Bishop Museum.

    Google Scholar 

  • Knutsson, H., Knutsson, K., Molin, F., & Zetterlund, P. (2016). From flint to quartz: Organization of lithic technology in relation to raw material availability during the pioneer process of Scandinavia. Quaternary International, 424, 32–57.

    Google Scholar 

  • Kohler, T. A., & Van West, C. R. (1996). The calculus of self-interest in the development of cooperation: Sociopolitical development and risk among the northern Anasazi. In J. A. Tainter & B. B. Tainter (Eds.), Evolving complexity and environmental risk in the prehistoric southwest (pp. 169–196). Addison-Wesley.

    Google Scholar 

  • Kolipinski, M.C. (1964). The life history, growth and ecology of four intertidal gastropods. PhD thesis. University of Miami, Miami, USA.

  • Krebs, J. R. (1978). Optimal foraging: Decision rules for predators. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology (pp. 23–63). Blackwell.

    Google Scholar 

  • Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Journal of Animal Behaviour, 22, 953–964.

    Google Scholar 

  • Ladefoged, T. N., Kirch, P. V., Gon III, S. M., Chadwick, O. A., Hartshorn, A. S., & Vitousek, P. M. (2009). Opportunities and constraints for intensive agriculture in the Hawaiian archipelago prior to European contact. Journal of Archaeological Science, 36, 2374–2383.

    Google Scholar 

  • Lasiak, T. (1991). The susceptibility and/or resilience of rocky littoral molluscs to stock depletion by the indigenous coastal people of Transkei, Southern Africa. Biological Conservation, 56(3), 245–264.

    Google Scholar 

  • Leavesley, M. G., & Allen, J. (1998). Dates, disturbance and artefact distributions: Another analysis of Buang Merabak, a Pleistocene site on New Ireland, Papua New Guinea. Archaeology of Oceania, 33, 63–82.

    Google Scholar 

  • Legendre, P., & Gallagher, E. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271–280.

    Google Scholar 

  • Legge, K. (1989). Changing responses to drought among the Wodaabe of Niger. In P. Halstead & J. O’Shea (Eds.), Bad year economics: Cultural responses to risk and uncertainty (pp. 81–86). Cambridge University Press.

    Google Scholar 

  • Lundblad, E. R., Wright, D. J., Miller, J., Larkin, E. M., Rinehart, R., Naar, D. F., Donahue, B. T., Anderson, S. M., & Battista, T. (2006). A benthic terrain classification scheme for American Samoa. Marine Geodesy, 29(2), 89–111.

    Google Scholar 

  • Madsen, D. B., & Schmitt, D. N. (1998). Mass collecting and the diet breadth model: A Great Basin example. Journal of Archaeological Science, 25, 445–455.

    Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton University Press.

    Google Scholar 

  • Margalef, R. (1972). Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Transactions. Connecticut Academy of Arts and Sciences, 44, 21l–235l.

    Google Scholar 

  • Marston, J. M. (2011). Archaeological markers of agricultural risk management. Journal of Anthropological Archaeology, 30, 190–205.

    Google Scholar 

  • Mason, R. D., Peterson, M. L., & Tiffany, J. A. (1998). Weighing vs. counting: Measurement reliability and the California school of midden analysis. American Antiquity, 63(2), 303–324.

    Google Scholar 

  • Metraux, A. (1940). Ethnology of Easter Island. Bernice P. bishop museum bulletin 160, Honolulu.

  • Minc, L. D., & Smith, K. P. (1989). The spirit of survival: Cultural responses to resource variability in North Alaska. In P. Halstead & J. O’Shea (Eds.), Bad year economics: Cultural responses to risk and uncertainty (pp. 8–39). Cambridge University Press.

    Google Scholar 

  • Montenegro, A., Callaghan, R. C., & Fitzpatrick, S. M. (2016). Using seafaring simulations and shortest-hop trajectories to model the prehistoric colonization of remote Oceania. Proceedings of the National Academy of Sciences, 113(45), 12685–12690.

    Google Scholar 

  • Morris, P. A. (1966). A Field guide to Pacific coast shells: Including shells of Hawaii and the Gulf of California (2nd ed.). Houghton Mifflin Company.

    Google Scholar 

  • Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T. S., Meiners, T., Muller, C., Obermaier, E., Prati, D., Socher, S. A., Sonnemann, I., Waschke, N., Wubet, T., Wurst, S., & Rillig, M. C. (2014). Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecology and Evolution, 4(18), 3514–3524.

    Google Scholar 

  • Morrison, A. E., & Allen, M. S. (2017). Agent-based modelling, molluscan population dynamics, and archaeomalacology. Quaternary International, 427, 170–183.

    Google Scholar 

  • Morrison, A. E., & Cochrane, E. E. (2008). Investigating shellfish deposition and landscape history at the Natia Beach site, Fiji. Journal of Archaeological Science 35(8), 2387–2399.

  • Morrison, A. E., & Hunt, T. L. (2007). Human impacts on the nearshore environment: An archaeological case study from Kaua‘i. Hawaiian Islands. Pacific Science, 61(3), 325–345.

    Google Scholar 

  • Mumby, P. J., & Harborne, A. R. (1999). Classification scheme for marine habitats of Belize, Report to the UNDP/GEF Belize Coastal Zone Management Project. Global Environment Facility.

    Google Scholar 

  • Nagaoka, L. (2001). Using diversity indices to measure changes in prey choice at the Shag River mouth site, southern New Zealand. International Journal of Osteoarchaeology, 11(12), 101–111.

    Google Scholar 

  • Nagaoka, L. (2002). The effects of resource depression on foraging efficiency, diet breadth, and patch use in southern New Zealand. Journal of Anthropological Archaeology, 21(4), 419–442.

    Google Scholar 

  • National Centers for Coastal Ocean Science (NCCOS). (2017). Data Collections: Printable Benthic Habitats Maps for the Main Hawaiian Islands 2007. Available: https://products.coastalscience.noaa.gov/collections/benthic/e97hawaii/maps2007.aspx. Accessed June 2020.

  • National Oceanic and Atmospheric Administration (NOAA). (2020). What do leeward and windward mean? National Ocean Service website. Available: https://oceanservice.noaa.gov/facts/windward-leeward.html#:~:text=An%20island's%20windward%20side%20faces,moist%20air%20from%20the%20water. Accessed June 2020.

  • Nelson-Viljoen, C., & Kyriacou, K. (2017). Shellfish exploitation strategies at the pinnacle point Shell Midden complex, South Africa, during the later Stone age. The Journal of Island and Coastal Archaeology, 12(4), 540–557.

    Google Scholar 

  • Newman, T.S. (1970). Makai -- Mauka: Fishing and Farming on the Island of Hawaii in A.D. 1778. PhD thesis. University of Hawaii, Honolulu, USA.

  • O’Shea, J. M. (1989). The role of wild resources in small-scale agricultural systems: Tales from the lakes and the plains. In P. Halstead & J. O’Shea (Eds.), Bad year economics: Cultural responses to risk and uncertainty (pp. 57–67). Cambridge University Press.

    Google Scholar 

  • Ono, R., Soegondho, S., & Yoneda, M. (2010). Changing marine exploitation during Late Pleistocene in northern Wallacea: Shell remains from Leang Sarru Rockshelter in Talaud Islands. Asian Perspectives, 48(2), 318–341.

    Google Scholar 

  • Palmer, B. (1969). Ring-ditch fortifications on windward Viti Levu, Fiji. Archaeology and Physical Anthropology in Oceania, 4(3), 181–197.

    Google Scholar 

  • Palmer, M. A., Graves, M., Ladefoged, T. N., Chadwick, O. A., Ka'eo Duarte, T., Porder, S., & Vitousek, P. M. (2009). Sources of nutrients to windward agricultural systems in precontact Hawai'i. Ecological Applications, 19(6), 1444–1453.

    Google Scholar 

  • Palomares, M.L.D., and Pauly, D. (2019). SeaLifeBase. World wide web electronic publication, version (12/2019). Available: http://www.sealifebase.org. Accessed May 2020.

  • Pereira, T., & Benedetti, M. M. (2013). A model for raw material management as a response to local and global environmental constraints. Quaternary International, 318, 19–32.

    Google Scholar 

  • Poiner, I. R., & Catterall, C. P. (1988). The effects of traditional gathering on populations of the marine gastropod Strombus luhuanus Linne 1758, in southern Papua New Guinea. Oecologia, 76, 191–199.

    Google Scholar 

  • Poutiers, J. M. (1998). Bivalves. Acephala, Lamellibranchia, Pelecypoda. In K. E. Carpenter & V. H. Niem (Eds.), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 1. Seaweeds, corals, bivalves, and gastropods (pp. 123–362). FAO.

    Google Scholar 

  • Prendergast, A. L., Stevens, R. E., O'Connell, T. C., Fadlalak, A., Touati, M., Al-Mzeine, A., Schöne, B. R., Hunt, C. O., & Barker, G. (2016). Changing patterns of eastern Mediterranean shellfish exploitation in the late glacial and Early Holocene: Oxygen isotope evidence from gastropod in Epipaleolithic to Neolithic human occupation layers at the Haua Fteah cave, Libya. Quaternary International, 407(Part B), 80–93.

    Google Scholar 

  • Prouty, N. G., Field, M. E., Stock, J. D., Jupiter, S. D., & McCulloch, M. (2010). Coral Ba/ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Marine Pollution Bulletin, 60(10), 1822–1835.

    Google Scholar 

  • Raab, M. (1992). An optimal foraging analysis of prehistoric shellfish collecting on San Clemente Island, California. Journal of Ethnobiology, 12, 63–80.

    Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology. Cambridge University Press.

    Google Scholar 

  • Rivera-Collazo, I. C. (2010). Of shell and sand: Coastal habitat availability and human foraging strategies at Punta Candelero (Humacao, Puerto Rico). Munibe Suplemento – Gehigarria, 31, 272–284.

    Google Scholar 

  • Rogers, A. J., & Weisler, M. I. (2020a). Limpet (Cellana spp.) shape is correlated with basalt or eolianite coastlines: Insights into prehistoric marine shellfish foraging and mobility in the Hawaiian islands. Journal of Archaeological Science: Reports, 34(Part A). https://doi.org/10.1016/j.jasrep.2020.102561

  • Rogers, A. J., & Weisler, M. I. (2020b). Assessing the efficacy of genus-level data in archaeomalacology: A case study of the Hawaiian limpet (Cellana spp.), Moloka‘i, Hawaiian islands. The. Journal of Island and Coastal Archaeology, 15(1), 28–56.

    Google Scholar 

  • Rogers, A. J., & Weisler, M. I. (2021). He i‘a make ka ‘opihi: Optimal foraging theory, food choice, and the fish of death. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-021-09506-w

  • Rolett, B. V. (1998). Hanamiai: Prehistoric colonization and cultural change in the Marquesas Islands (East Polynesia). Yale University Publications.

    Google Scholar 

  • Sabelli, B. (1979). Simon & Schuster’s guide to shells. Conchbooks.

    Google Scholar 

  • Severns, M. (2000). Hawaiian seashells. Island Heritage Publishing.

    Google Scholar 

  • Severns, M. (2011). Shells of the Hawaiian Islands: The Sea Shells. Conchbooks.

    Google Scholar 

  • Smith, E. A. (1983). Anthropological applications of optimal foraging theory: A critical review. With comments by Bettinger, R.L., bishop, C.A., Blundell, V., Cashdan, E., Casimir, M.J., Christenson, A.L., et al. Current Anthropology, 24(5), 625–651.

    Google Scholar 

  • Smith, E. A. (1990). Risk and uncertainty in the ‘original affluent society’: Evolutionary ecology of resource-sharing and land tenure. In T. Ingold, D. Riches, & J. Woodburn (Eds.), Hunters and gatherers: History, evolution, and social change (pp. 222–251). Berg.

    Google Scholar 

  • Smith, E. A. (1991). Inujjuamiut foraging strategies: Evolutionary ecology of an Arctic hunting economy. Aldine de Gruyter.

    Google Scholar 

  • Smith, B. D. (2003). Prosobranch gastropods of Guam. Micronesia, 35–36, 244–270.

    Google Scholar 

  • Smith, C. B., Ebert, C. E., & Kennett, D. J. (2014). Human ecology of shellfish exploitation at a prehistoric fishing-farming village on the Pacific coast of Mexico. The Journal of Island and Coastal Archaeology, 9, 183–202.

    Google Scholar 

  • Stearns, H.T., & Macdonald, G.A. (1947). Geology and ground-water resources of the island of Molokai, Hawaii, bulletin 11. Hawaii division of hydrography. Prepared in cooperation with geological survey, US Department of the Interior, Honolulu, Hawaii.

  • Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.

    Google Scholar 

  • Storlazzi, C. D., Ogston, A. S., Bothner, M. H., Field, M. E., & Presto, M. K. (2004). Wave- and tidally driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii. Continental Shelf Research, 24, 1397–1419.

    Google Scholar 

  • Suggs, R. (1961). The archaeology of Nuku Hiva, Marquesas Island, French Polynesia. Anthropological papers of the American Museum of Natural History 49, New York.

  • Summers, C. C. (1964). Hawaiian fishponds. Bishop Museum Press.

    Google Scholar 

  • Summers, C. C. (1971). Molokai: A site survey. Pacific anthropological records 14. Department of Anthropology, Bernice P. Bishop Museum, Honolulu.

  • Szabó, K. (2009). Molluscan remains from Fiji. In G. Clark & A. J. Anderson (Eds.), The early prehistory of Fiji, Terra Australis 31 (pp. 183–212). ANU E Press.

    Google Scholar 

  • Szabó, K., & Anderson, A. (2012). The Tangarutu invertebrate fauna. In A. Anderson & D. J. Kennett (Eds.), Taking the high ground: The archaeology of Rapa, A Fortified Island in remote East Polynesia, Terra Australis 31 (pp. 135–144). ANU E Press.

    Google Scholar 

  • Szabó, K., Vogel, Y., & Anderson, A. (2012). Marine resource exploitation on Rapa Island: Archaeology, material culture and ethnography. In A. Anderson & D. J. Kennett (Eds.), Taking the high ground: The archaeology of Rapa, A Fortified Island in remote East Polynesia, Terra Australis 31 (pp. 145–166). ANU E Press.

    Google Scholar 

  • Taliaferro, W. J. (1959). Rainfall of the Hawaiian islands. Prepared for the Hawaii Water Authority.

    Google Scholar 

  • Thomas, F. R. (2007a). The behavioral ecology of shellfish gathering in Western Kiribati, Micronesia. 2: Patch choice, patch sampling, and risk. Human Ecology, 35, 515–526.

    Google Scholar 

  • Thomas, F. R. (2007b). The behavioral ecology of shellfish gathering in Western Kiribati, Micronesia 1: Prey choice. Human Ecology, 35, 179–194.

    Google Scholar 

  • Thomas, F. R. (2014). Shellfish gathering and conservation on low coral islands: Kiribati perspectives. Journal of Island and Coastal Archaeology, 9, 203–218.

    Google Scholar 

  • Thomas, F. R. (2019). Sustainable extractive strategies in the pre-European contact Pacific: Evidence from mollusk resources. Journal of Ethnobiology, 39(2), 240–261.

    Google Scholar 

  • Thomas, K. D., & Zapata, L. (2017). The efficiency of flotation compared with other methods for recovering assemblages of terrestrial and aquatic gastropods from archaeological deposits, with reference to the site of Pico Ramos (Basque Country, Spain). Environmental Archaeology. https://doi.org/10.1080/14614103.2017.1345087.

  • Thomas, D., Cox, M., Erlandson, D., & Kajiwara, L. (1979). Potential geothermal resources in Hawaii: A preliminary regional survey. Assessment of geothermal resources in Hawaii: Number 1. Phase I final report prepared for Western states cooperative direct heat resources assessment. Available: https://www.osti.gov/servlets/purl/5196180. Accessed February 2021.

  • Timmermann, A., & Friedrich, T. (2016). Late Pleistocene climate drivers of early human migration. Nature, 538(7623), 92–95.

  • Tuomisto, H. (2012). An updated consumer’s guide to evenness and related indices. Oikos, 121(8), 1203–1218.

    Google Scholar 

  • Uechi, C. (2019). Molokai group seeks to restore stream flows. The Maui News. Available: https://www.mauinews.com/news/local-news/2019/07/molokai-group-seeks-to-restore-stream-flows/. Accessed June 2020.

  • Ugan, A. (2005). Does size matter? Body size, mass collecting, and their implications for understanding prehistoric foraging behavior. American Antiquity, 70, 75–89.

    Google Scholar 

  • Underwood, A. J. (1975). Comparative studies on the biology of Nerita atramentosa reeve, Bembicium nanum (Lamarck) and Cellana tramoserica (Sowerby) (Gastropoda: Prosobranchia) in S.E. Australia. Journal of Experimental Marine Biology and Ecology, 18, 153–172.

    Google Scholar 

  • Vitousek, P. M., Chadwick, O. A., Hilley, G., Kirch, P. V., & Ladefoged, T. N. (2010). Erosion, geological history, and indigenous agriculture: A tale of two valleys. Ecosystems, 13, 782–793.

    Google Scholar 

  • Vogel, Y., & Anderson, A. J. (2012). Prehistoric fishing on Rapa Island. In A. J. Anderson & D. J. Kennett (Eds.), Taking the high ground: The archaeology of Rapa, A Fortified Island in remote Polynesia, Terra Australis 37 (pp. 115–133). ANU E Press.

    Google Scholar 

  • Weisler, M.I. (1983). An archaeological survey and geomorphological reconstructions of the Kakahai‘a National Wildlife Refuge, Kawela, Moloka‘i, Hawaiian islands. Manuscript 080883 on file, Department of Anthropology, Bernice P. Bishop Museum, Honolulu.

  • Weisler, M. (1989). Chronometric dating and late Holocene prehistory in the Hawaiian islands: A critical review of radiocarbon dates from Moloka‘I Island. Radiocarbon, 31(2), 121–145.

    Google Scholar 

  • Weisler, M. I. (1991). The archaeology of a Hawaiian dune system: The nature Conservancy’s Mo‘omomi preserve, Moloka‘i. Archaeological Research and Consulting Services.

    Google Scholar 

  • Weisler, M. I. (1993). The importance of fish otoliths in Pacific Island archaeofaunal analysis. New Zealand Journal of Archaeology, 15, 131–159.

    Google Scholar 

  • Weisler, M. I. (1995). Henderson Island prehistory: Colonization and extinction on a remote Polynesian island. Biological Journal of the Linnean Society, 56(1–2), 377–404.

    Google Scholar 

  • Weisler, M. (2011). A quarried landscape in the Hawaiian islands. World Archaeology, 43(2), 298–317.

    Google Scholar 

  • Weisler, M., & Kirch, P. V. (1985). The structure of settlement space in a Polynesian chiefdom: Kawela, Molokai, Hawaiian islands. New Zealand Journal of Archaeology, 7, 129–158.

    Google Scholar 

  • Weisler, M. I., & Rogers, A. J. (2018). Summary report on the excavations at the Kai‘ehu point site (50–60-02-2483), Moloka‘i. Report prepared for the Historic Preservation Office.

    Google Scholar 

  • Weisler, M. I., & Rogers, A. J. (2020). Ritual use of limpets in late Hawaiian prehistory. Journal of Field Archaeology. https://doi.org/10.1080/00934690.2020.1835267

  • Weisler, M. I., Mihaljević, M., & Rogers, A. J. (2019). Sea urchins: Improving understanding of prehistoric subsistence, diet, foraging behavior, tool use, and ritual practices in Polynesia. The Journal of Island and Coastal Archaeology, 15(4), 547–575.

    Google Scholar 

  • Whitaker, A. R. (2008). Incipient aquaculture in prehistoric California? Long-term productivity and sustainability vs. immediate returns for the harvest of marine invertebrates. Journal of Archaeological Science, 35(4), 1114–1123.

    Google Scholar 

  • Whitaker, A. R., & Byrd, B. F. (2014). Social circumscription, territoriality, and the late Holocene intensification of small-bodied shellfish along the California coast. The Journal of Island and Coastal Archaeology, 9, 150–168.

    Google Scholar 

  • Wickler, S. (2001). The prehistory of Buka: Stepping Stone Island in the northern Solomons. Terra Australis. Department of Archaeology and Natural History and Centre for Archaeological Research. Australian National University.

    Google Scholar 

  • Winterhalder, B. (1981). Optimal foraging strategies and hunter–gatherer research in anthropology: Theory and models. In Winterhalder, B., and Smith, E.A. (eds.), Hunter–Gatherer Foraging Strategies, pp.13–35. University of Chicago, .

  • Winterhalder, B. (1986). Diet choice, risk, and food sharing in a stochastic environment. Journal of Anthropological Archaeology, 5, 369–392.

    Google Scholar 

  • Winterhalder, B. (1990). Open field, common pot: Harvest variability and risk avoidance in agricultural and foraging societies. In E. Cashdan (Ed.), Risk and uncertainty in tribal and peasant economies (pp. 67–87). Westview Press.

    Google Scholar 

  • Winterhalder, B., & Goland, C. (1997). An evolutionary ecology perspective on diet choice, risk, and plant domestication. In K. J. Gremillion (Ed.), People, plants, and landscapes: Studies in Paleoethnobotany (pp. 123–160). University of Alabama Press.

    Google Scholar 

  • Winterhalder, B., & Smith, E. A. (Eds.). (1981). Hunter-gatherer foraging strategies: Ethnographic and archaeological analyses. University of Chicago Press.

    Google Scholar 

  • WoRMS Editorial Board. (2021). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed February 2021. https://doi.org/10.14284/170.

  • Wright, N. J., Fairbairn, A. S., Faith, J. T., & Matsumura, K. (2015). Woodland modification in bronze and Iron age Central Anatolia: An anthracological signature for the Hittite state? Journal of Archaeological Science, 55, 219–230.

    Google Scholar 

  • Ziegler, A. C. (2002). Hawaiian natural history, ecology, and evolution. University of Hawai‘i Press.

    Google Scholar 

Download references

Acknowledgements

Thank you to the anonymous reviewers whose thoughtful comments greatly sharpened and clarified our manuscript. This research was supported by The Australian Institute of Nuclear Science and Engineering (AINSE Postgraduate Research Award) and an Australian Government Research Training Program (RTP) Scholarship, awarded to Rogers. Grants from The Society for Hawaiian Archaeology (SHA Student Grant), Society of American Archaeology (SAA Dienje Kenyon Memorial Fellowship), and the School of Social Science, The University of Queensland (UQ) contributed funding to the 2018 excavation of the Kai‘ehu site. The Nature Conservancy of Hawai‘i (TNCH) financially supported the excavations, initial lab analyses, and access to the Kai‘ehu site in 1989. Ed Misaki (TNCH) championed the need for the research and access to the Mo‘omomi Preserve where the Kai‘ehu site is located. The Kawela Mound excavations were supported by Kawela Plantation Development Associates and Moloka‘i Ranch Inc., administered through the Bernice Pauahi Bishop Museum during 1980-82 where Sara Collins and Virgil Meeker assisted with the lab processing. Charmaine Wong (Archaeology Collections Manager, Bishop Museum) facilitated the loan of the Kawela Mound shellfish for further analysis. We greatly thank all and especially the Bishop Museum for curation of the Kawela material for the past 40 years which has made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashleigh J. Rogers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, A.J., Weisler, M.I. Risk, Reliability, and the Importance of Small-Bodied Molluscs across the Hawaiian Windward-Leeward Divide. Hum Ecol 50, 141–165 (2022). https://doi.org/10.1007/s10745-021-00297-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-021-00297-y

Keywords

Navigation