Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia

Abstract

The Australian desert ecosystem coevolved with humans over the course of fifty millennia, yet our understanding of the place of humans within the ecosystem is only now beginning to deepen; recent research suggests that the removal of Aboriginal people from homelands precipitated rapid ecosystem remodeling. We suggest that network-based approaches are instrumental in broadening our understanding of humans in ecosystems, so apply these approaches to examine nomadic-era ecosystems (when Aboriginal people lived exclusive foraging-based lifeways) and contemporary-era ecosystems (when Aboriginal people live a mixed-based economy lifestyle). Using the approach of food web modeling we explicitly place Martu Aboriginal foragers within the overall ecosystem of the Western Desert. By linking humans to the other biota in the desert, examining each species as nodes in a network and each consumption link as edges in the network, we can better understand the ways the network connectedness shifts between nomadic-era and contemporary-era food webs. Using network randomization simulations we show that the contemporary food webs deviate significantly from the nomadic era food webs, suggesting a key role of humans as “knitters” of the ecosystem. This work has implications for research on resilient ecosystems, both within Australia and beyond, and suggests that humans have significant roles to play in sustainability and resilience.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Australia, Commonwealth of (2009) Assessment of Australia’s terrestrial biodiversity 2008. Current

  2. Australia, Commonwealth of (2018a) Australian Government : Bureau of Meteorology. http://www.bom.gov.au. Accessed 5 Jan 2018

  3. Australia, Commonwealth of (2018b) Mala/rufous hare-wallaby. In: Aust. Wildl. Conserv. http://www.australianwildlife.org/wildlife/mala-rufous-hare-wallaby.aspx. Accessed 5 Jan 2018

  4. Baiser, B., Russell, G. J., and Lockwood, J. L. (2010). Connectance determines invasion success via trophic interactions in model food webs. Oikos 119: 1970–1976. https://doi.org/10.1111/j.1600-0706.2010.18557.x.

    Article  Google Scholar 

  5. Barabási, A.-L., and Albert, R. (1999). Emergence of scaling in random networks. Science 286(80): 509 LP–509512.

    Google Scholar 

  6. Bartomeus, I., Vilà, M., and Santamaría, L. (2008). Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155: 761–770. https://doi.org/10.1007/s00442-007-0946-1.

    Article  Google Scholar 

  7. Bharucha, Z., and Pretty, J. (2010). The roles and values of wild foods in agricultural systems. Philos trans R Soc B biol Sci 365: 2913 LP–2912926.

    Article  Google Scholar 

  8. Bird, D. W., Bird, R. B., and Codding, B. F. (2009). In pursuit of Mobile prey: Martu hunting strategies and Archaeofaunal interpretation. Am Antiq 74: 3–29. https://doi.org/10.1017/S000273160004748X.

    Article  Google Scholar 

  9. Bird, D. W., Codding, B. F., Bliege Bird, R., et al (2013). Megafauna in a continent of small game: Archaeological implications of Martu camel hunting in Australia’s Western Desert. Quat Int 297: 155–166. https://doi.org/10.1016/j.quaint.2013.01.011.

    Article  Google Scholar 

  10. Bliege Bird, R., and Bird, D. W. (2008). Why women hunt: Risk and contemporary foraging in a Western Desert aboriginal community. Curr Anthropol 49: 655–693. https://doi.org/10.1086/587700.

    Article  Google Scholar 

  11. Bliege Bird, R., and Nimmo, D. (2018). Restore the lost ecological functions of people. Nat Ecol Evol. https://doi.org/10.1038/s41559-018-0576-5.

    Article  Google Scholar 

  12. Bliege Bird, R., Bird, D. W., Codding, B. F., et al (2008). The “fire stick farming” hypothesis: Australian aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc Natl Acad Sci 105: 14796–14801.

    Article  Google Scholar 

  13. Bliege Bird, R., Codding, B., Kauhanen, P., and Bird, D. (2012a). Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc Natl Acad Sci 109: 10287–10292. https://doi.org/10.1073/pnas.1204585109.

    Article  Google Scholar 

  14. Bliege Bird, R., Codding, B. F., Kauhanen, P. G., and Bird, D. W. (2012b). Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. In Proc Natl Acad Sci 109:10287 LP-10292.

    Google Scholar 

  15. Bliege Bird, R., Tayor, N., Codding, B. F., and Bird, D. W. (2013). Niche construction and dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc R Soc B Biol Sci 280: 20132297. https://doi.org/10.1098/rspb.2013.2297.

    Article  Google Scholar 

  16. Bliege Bird, R., Bird, D. W., and Codding, B. F. (2016). People, El Niño southern oscillation and fire in Australia: Fire regimes and climate controls in hummock grasslands. Phil Trans R Soc B 371: 20150343.

    Article  Google Scholar 

  17. Bliege Bird, R., Bird, D. W., Fernandez, L. E., et al (2018). Aboriginal burning promotes fine-scale pyrodiversity and native predators in Australia’s Western Desert. Biol Conserv 219: 110–118. https://doi.org/10.1016/j.biocon.2018.01.008.

    Article  Google Scholar 

  18. Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of Western Australia’s vertebrate fauna: Causes and conservation implications. Biol Conserv 50: 143–198.

    Article  Google Scholar 

  19. Burrows, N. D., Burbidge, A. A., Fuller, P. J., and Behn, G. (2006). Evidence of altered fire regimes in the Western Desert region of Australia. Conserv Sci West Aust 5: 14–26.

    Google Scholar 

  20. Calladine, A., and Crichton, E. (2015). Atlas of living Australia science symposium, Review of Online and Desktop Tools for the ALA, In, pp. 1–309.

    Google Scholar 

  21. Cane, S. (1987). Australian aboriginal subsistence in the Western desert. Hum Ecol 15: 391–434. https://doi.org/10.1007/BF00887998.

    Article  Google Scholar 

  22. Castilla, J. C. (1999). Coastal marine communities: Trends and perspectives from human-exclusion experiments. Trends Ecol Evol 14: 280–283. https://doi.org/10.1016/S0169-5347(99)01602-X.

    Article  Google Scholar 

  23. Codding BF (2011) “Any kangaroo?” On the ecology, ethnography and archaeology of foraging in Australia’s arid west. Stanford University

  24. Codding, B. F., Bird, R. B., Kauhanen, P. G., and Bird, D. W. (2014). Conservation or co-evolution? Intermediate levels of aboriginal burning and hunting have positive effects on kangaroo populations in Western Australia. Hum Ecol 42: 659–669. https://doi.org/10.1007/s10745-014-9682-4.

    Article  Google Scholar 

  25. Codding, B. F., Bliege Bird, R., Bird, D. W., and Zeanah, D. W. (2016). Alternative aboriginal economies: Martu livelihoods in the 21st century. In Codding, B. F., and Kramer, K. (eds.), Why forage? 21st century hunting and gathering. University of new Mexico Press, pp. 185–211.

    Google Scholar 

  26. Crabtree, S. A., Bocinsky, R. K., Hooper, P. L., et al (2017a). How to make a polity (in the Central Mesa Verde region). Am Antiq 82: 71–95. https://doi.org/10.1017/aaq.2016.18.

    Article  Google Scholar 

  27. Crabtree, S. A., Vaughn, L. J. S., and Crabtree, N. T. (2017b). Reconstructing Ancestral Pueblo food webs in the southwestern United States. J Archaeol Sci 81: 116–127. https://doi.org/10.1016/j.jas.2017.03.005.

    Article  Google Scholar 

  28. Crooks, K. R., and Soulé, M. E. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563.

    Article  Google Scholar 

  29. Dunne, J. A. (2006). The network structure of food webs. In Pascual, M., and Dunne, J. A. (eds.), Ecological networks: Linking structure to dynamics in food webs, Oxford University Press, New York, USA, pp. 27–85.

    Google Scholar 

  30. Dunne, J. A., and Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philos Trans Biol Sci 364: 1711–1723.

    Article  Google Scholar 

  31. Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002a). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett 5: 558–567. https://doi.org/10.1046/j.1461-0248.2002.00354.x.

    Article  Google Scholar 

  32. Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002b). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett 5: 558–567. https://doi.org/10.1046/j.1461-0248.2002.00354.x.

    Article  Google Scholar 

  33. Dunne, J. A., Williams, R. J., and Martinez, N. D. (2004). Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273: 291–302. https://doi.org/10.3354/meps273291.

    Article  Google Scholar 

  34. Dunne, J. A., Williams, R. J., Martinez, N. D., et al (2008). Compilation and network analyses of Cambrian food webs. PLoS Biol 6: 693–708. https://doi.org/10.1371/journal.pbio.0060102.

    Article  Google Scholar 

  35. Dunne, J. A., Lafferty, K. D., Dobson, A. P., et al (2013). Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol 11. https://doi.org/10.1371/journal.pbio.1001579.

    Article  Google Scholar 

  36. Dunne, J. A., Maschner, H., Betts, M. W., et al (2016). The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci Rep 6: 21179.

    Article  Google Scholar 

  37. Eder, J. F. (1988). Batak foraging camps today: A window to the history of a hunting-gathering economy. Hum Ecol 16: 35–55. https://doi.org/10.1007/BF01262025.

    Article  Google Scholar 

  38. Futuyma, D. J., and Moreno, G. (2014). The evolution of ecological specialization. Annu Rev Ecol Syst 19: 207–233.

    Article  Google Scholar 

  39. Geyle, H. M., Woinarski, J. C. Z., Baker, G. B., et al (2018). Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conserv Biol 24: 157–167. https://doi.org/10.1071/PC18006.

    Article  Google Scholar 

  40. Godoy, R., Reyes-García, V., Byron, E., et al (2005). The effect of market economies on the well-being of indigenous peoples and on their use of renewable natural resources. Annu Rev Anthropol 34: 121–138. https://doi.org/10.1146/annurev.anthro.34.081804.120412.

    Article  Google Scholar 

  41. Gould, R. A. (1969). Subsistence behaviour among the Western Desert aborigines of Australia. Oceania 39: 253–274. https://doi.org/10.1002/j.1834-4461.1969.tb01026.x.

    Article  Google Scholar 

  42. Gould, R. A. (1971). Uses and effects of fire among the Western Desert aborigines of Australia. Mankind 8: 14–24.

    Google Scholar 

  43. Hames, R. B., and Vickers, W. T. (2018). Optimal diet breadth theory as a model to explain variability in Amazonian hunting. Am Ethnol 9: 358–378. https://doi.org/10.1525/ae.1982.9.2.02a00090.

    Article  Google Scholar 

  44. Hanazaki, N., and Begossi, A. (2003). Does fish still matter? Changes in the diet of two Brazilian fishing communities. Ecol Food Nutr 42: 279–301. https://doi.org/10.1080/03670240390229643.

    Article  Google Scholar 

  45. Jones, R. (1969). Fire-stick farming. Aust Nat Hist 16: 224–228.

    Google Scholar 

  46. Kimber, R. (1983). Black lightning: Aborigines and fire in Central Australia and the Western Desert. Archaeol Ocean 18: 38–45.

    Article  Google Scholar 

  47. King, D., and Green, B. (1979). Notes on diet and reproduction of the sand goanna , Varanus gouldii rosenbergi. Copeia 1979: 64–70.

    Article  Google Scholar 

  48. Kuchikura, Y. (1988). Food use and nutrition in hunting and gathering Community in Transition, peninsular Malaysia. Man Cult Ocean 4: 1–30.

    Google Scholar 

  49. Latz P (2004) Bushfires and Bushtucker: Australian aboriginal plant use in Central Australia. IAD Press

  50. Leahy, L., Legge, S. M., Tuft, K., et al (2016). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl Res 42: 705–716. https://doi.org/10.1071/WR15011.

    Article  Google Scholar 

  51. Liu, J., Yang, W., and Li, S. (2016). Framing ecosystem services in the telecoupled Anthropocene. Front Ecol Environ 14: 27–36. https://doi.org/10.1002/16-0188.1.

    Article  Google Scholar 

  52. Maccord PL, Begossi A (2006) Dietary Changes over Time in a Caiçara Community from the Brazilian Atlantic Forest. Mudanças dietéticas com o passar do tempo em uma Comunidade de Caiçara da Floresta Atlântica brasileira. Ecol Soc 11:13

  53. Maschner, H. D. G., Betts, M. W., Cornell, J., et al (2009). An introduction to the biocomplexity of Sanak Island , Western Gulf of Alaska. Pacific Sci 63: 673–709.

    Article  Google Scholar 

  54. May, R. M. (1972). Will a large complex system be stable? Nature 238: 413.

    Article  Google Scholar 

  55. McCall, G. S. (2000). Ju/‘hoansi adaptations to a cash economy. African Sociol Rev 4: 138–155.

    Article  Google Scholar 

  56. McCann, K., Hastings, A., and Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature 395: 794–798. https://doi.org/10.1038/27427.

    Article  Google Scholar 

  57. McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9. https://doi.org/10.1371/journal.pone.0109097.

    Article  Google Scholar 

  58. McNaughton, S. J. (1978). Stability and diversity of ecological communities. Nature 274: 251.

    Article  Google Scholar 

  59. Memmott, J., Waser, N. M., and Price, M. V. (2004). Tolerance of pollination networks to species extinctions. Proc R Soc London Ser B biol Sci 271: 2605 LP–2602611.

    Article  Google Scholar 

  60. Neutel, A.-M., Heesterbeek, J. A. P., and de Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops. Science 296(80): 1120 LP–1121123.

    Article  Google Scholar 

  61. Norton, B. G. (2000). Population and consumption: Environmental problems as problems of scale. Ethics Environ 5: 23–45.

    Article  Google Scholar 

  62. O’Connell, J. F., and Hawkes, K. (1984). Food choice and foraging sites among the Alyawara. J Anthropol Res 40: 504–535.

    Article  Google Scholar 

  63. Orians G, Pearson N (1979) On the theory of central place foraging. In: Horn D, Mitchell R, Stairs G (eds) Advances in Ecological Systems. pp 154–177

  64. Pimm, S. L. (1979). The structure of food webs. Theor Popul Biol 16: 144–158. https://doi.org/10.1016/0040-5809(79)90010-8.

    Article  Google Scholar 

  65. Post, W. M., and Pimm, S. L. (1983). Community assembly and food web stability. Math Biosci 64: 169–192. https://doi.org/10.1016/0025-5564(83)90002-0.

    Article  Google Scholar 

  66. Ready, E., and Power, E. A. (2017). Why wage earners hunt: Food sharing, social structure, and influence in an Arctic mixed economy. Curr Anthropol 59: 74–97. https://doi.org/10.1086/696018.

    Article  Google Scholar 

  67. Rezende, E. L., Lavabre, J. E., Guimarães, P. R., et al (2007). Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448: 925.

    Article  Google Scholar 

  68. Romanuk, T. N., Zhou, Y., Brose, U., et al (2009). Predicting invasion success in complex ecological networks. Philos trans R Soc B biol Sci 364: 1743 LP–1741754.

    Article  Google Scholar 

  69. Romanuk TN, Zhou Y, Valdovinos FS, Martinez ND (2017) Robustness trade-offs in model food webs: Invasion probability decreases while invasion consequences increase with Connectance, 1st edn. Elsevier Ltd.

  70. Scelza, B. A. (2012). Food scarcity, not economic constraint limits consumption in a rural aboriginal community. Aust J Rural Health 20: 108–112.

    Article  Google Scholar 

  71. Scelza, B. A., Bird, D. W., and Bliege Bird, R. (2014). Bush Tucker, shop Tucker: Production, consumption, and diet at an aboriginal outstation. Ecol Food Nutr 53: 98–117. https://doi.org/10.1080/03670244.2013.772513.

    Article  Google Scholar 

  72. Schoener, T. W. (1979). Generality of the size-distance relation in models of optimal feeding. Am Nat 114: 902–914. https://doi.org/10.1086/283537.

    Article  Google Scholar 

  73. Smith-Ramesh, L. M., Moore, A. C., and Schmitz, O. J. (2017). Global synthesis suggests that food web connectance correlates to invasion resistance. Glob Chang Biol 23: 465–473. https://doi.org/10.1111/gcb.13460.

    Article  Google Scholar 

  74. Solé, R. V., and Montoya, M. (2001). Complexity and fragility in ecological networks. Proc R Soc London Ser B biol Sci 268: 2039 LP–2032045.

    Article  Google Scholar 

  75. Srinivasan, U. T., Dunne, J. A., Harte, J., and Martinez, N. D. (2007). Response of complex food webs to realistic extinction sequences. Ecology 88: 671–682. https://doi.org/10.1890/06-0971.

    Article  Google Scholar 

  76. Sutherland, D. R., Glen, A. S., and de Tores, P. J. (2011). Could controlling mammalian carnivores lead to mesopredator release of carnivorous reptiles? Proc R Soc B Biol Sci 278: 641–648. https://doi.org/10.1098/rspb.2010.2103.

    Article  Google Scholar 

  77. Svanbäck, R., and Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proc R Soc B Biol Sci 274: 839–844. https://doi.org/10.1098/rspb.2006.0198.

    Article  Google Scholar 

  78. Terborgh, J., Lopez, L., Nuñez, P., et al (2001). Ecological meltdown in predator-free Forest fragments. Science 294(80): 1923 LP–1921926.

    Article  Google Scholar 

  79. Thompson, R. M., Brose, U., Dunne, J. A., et al (2012). Food webs: Reconciling the structure and function of biodiversity. Trends Ecol Evol 27: 689–697. https://doi.org/10.1016/j.tree.2012.08.005.

    Article  Google Scholar 

  80. Tylianakis, J. M., Laliberté, E., Nielsen, A., and Bascompte, J. (2010). Conservation of species interaction networks. Biol Conserv 143: 2270–2279. https://doi.org/10.1016/j.biocon.2009.12.004.

    Article  Google Scholar 

  81. Walsh, F. J. (1987). The influence of the spatial and temporal distribution of plant food resources on traditional Martujarra subsistence strategies. Aust Archaeol: 88–101.

  82. Walsh, F. (1990). An ecological study of traditional aboriginal use of ‘“country”’: Martu in the great and little Sandy deserts, Western Australia. Proc Ecol Soc Aust 16: 23–37.

    Google Scholar 

  83. Walsh F (2008) To hunt and to hold: Martu aboriginal people’s uses and knowledge of their country, with implications for co-management in Karlamilyi (Rudall River) National Park and the great Sandy Desert, Western Australia. The University of Western Australia

  84. Walsh, F., and Douglas, J. (2011). No bush foods without people: The essential human dimension to the sustainability of trade in native plant products from desert Australia. Rangel J 33: 395–416.

    Article  Google Scholar 

  85. Walsh, F. J., Dobson, P. V., and Douglas, J. C. (2013). Anpernirrentye: A framework for enhanced application of indigenous ecological knowledge in natural resource management. Ecol Soc 18. https://doi.org/10.5751/ES-05501-180318.

  86. Williams RJ (2010) Network3D software. In: Microsoft Research. Cambridge, U. K.

  87. Williams, R. J., Berlow, E. L., Dunne, J. A., et al (2002). Two degrees of separation in complex food webs. Proc Natl Acad Sci 99: 12913–12916. https://doi.org/10.1073/pnas.192448799.

    Article  Google Scholar 

  88. Winterhalder, B. (1981). Foraging strategies in the boreal forest: An analysis of Cree hunting and gathering. In Winterhalder, B., and Smith, E. A. (eds.), Hunter gatherer foraging strategies: Ethnographic and archeological analyses. University of Chicago Press, Chicago, Illinois, pp. 66–98.

    Google Scholar 

  89. Woinarski J, Legge S, Fitzsimons J, et al (2011) The disappearing mammal fauna of northern Australia: Context, cause, and response

  90. Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc Natl Acad Sci 112: 4531 LP–4534540.

    Article  Google Scholar 

  91. Yoon I, Williams R, Levine E, et al (2004) Webs on the web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education. Pp 124–132

  92. Zeanah, D. W., Codding, B. F., Bird, D. W., et al (2015). Diesel and damper: Changes in seed use and mobility patterns following contact amongst the Martu of Western Australia. J Anthropol Archaeol 39: 51–62. https://doi.org/10.1016/j.jaa.2015.02.002.

    Article  Google Scholar 

  93. Zeanah, D. W., Codding, B. F., Bird, R. B., and Bird, D. W. (2017). Mosaics of fire and water: The co-emergence of anthropogenic landscapes and intensive seed exploitation in the Australian arid zone. Aust Archaeol 83: 2–19. https://doi.org/10.1080/03122417.2017.1359876.

    Article  Google Scholar 

  94. Zhu, Y., Yan, X., and Moore, C. (2014). Oriented and degree-generated block models: Generating and inferring communities with inhomogeneous degree distributions. J Complex Networks 2: 1–18. https://doi.org/10.1093/comnet/cnt011.

    Article  Google Scholar 

  95. Ziembicki M, Woinarski J, Mackey B (2013) Evaluating the status of species using Indigenous knowledge: Novel evidence for major native mammal declines in northern Australia

  96. Ziembicki, M. R., Woinarski, J. C. Z., Webb, J. K., et al (2015). Stemming the tide: Progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6: 169–226. https://doi.org/10.12933/therya-15-236.

    Article  Google Scholar 

Download references

Acknowledgments

First and foremost our gratitude goes to all of our Martu colleagues, friends, and family that have made this work possible. This work has been generously supported by grants from the National Science Foundation (BCS-1459880) and the Max Planck Institute for Evolutionary Anthropology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefani A. Crabtree.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplemental Table 1

Common network measures calculated using Network3D (Yoon et al. 2004; Williams 2010) for the current study and two other human-centered food webs studies to demonstrate comparability of the metrics. (XLSX 44 kb)

Supplemental Table 2

Output from the Niche model, including observed values, model means and standard errors. (XLSX 11 kb)

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crabtree, S.A., Bird, D.W. & Bird, R.B. Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia. Hum Ecol 47, 165–177 (2019). https://doi.org/10.1007/s10745-019-0053-z

Download citation

Keywords

  • Food webs
  • Human-behavioral ecology
  • Coupled human/natural systems
  • Australia
  • Networks