Human Ecology

, Volume 43, Issue 2, pp 339–353 | Cite as

Household Agrobiodiversity Management on Amazonian Dark Earths, Oxisols, and Floodplain Soils on the Lower Madeira River, Brazil

  • Nicholas C. Kawa
  • José A. Clavijo Michelangeli
  • Charles R. Clement
Article

Abstract

Smallholder farmers play a critical role in the maintenance of global agrobiodiversity. However, the social and environmental factors that shape agrobiodiversity and its management in rural smallholder communities are still debated among scholars. This study examines variation in the diversity of useful plant species (i.e., species richness) managed by households located in three distinct environments along the Lower Madeira River in the Central Brazilian Amazon: Amazonian Dark Earths (ADE), upland Oxisols (OX), and floodplain soils (FP). Among the 106 households studied, those located on ADE managed a significantly higher number of useful species than those on floodplain soils but not than those on Oxisols. A generalized linear mixed effects model indicates that the age of the household head, number of household members and adults, and area of land under cultivation are statistically significant factors that influence species richness across all households. Ethnographic data are employed to contextualize these findings and discuss other influences on agrobiodiversity management in rural Amazonian communities, including regional historical ecology and the life histories of individual farmers.

Keywords

Agrobiodiversity Species richness Amazonian Dark Earths (ADE) Smallholder agriculture Amazonia Brazil 

References

  1. Altieri, M. A. (1999). The Ecological Role of Biodiversity in Agroecosystems. Agriculture, Ecosystems and Environment 74: 19–31.CrossRefGoogle Scholar
  2. Balée, W. L. (1994). Footprints of the Forest: Ka’apor Ethnobotany – The Historical Ecology of Plant Utilization by an Amazonian People. Columbia University Press, New York.Google Scholar
  3. Balée, W. L., and Erickson, C. L. (eds.) (2006). Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands. Columbia University Press, New York.Google Scholar
  4. Baligar, V. C., and Fageria, N. K. (2005). Soil Aluminum Effects on Growth and Nutrition of Cacao. Soil Science & Plant Nutrition 51(5): 709–713.CrossRefGoogle Scholar
  5. Barbieri, A. F., Bilsborough, R. E., and Pan, W. K. (2005). Farm Household Lifecycles and Land Use in the Ecuadorian Amazon. Population and Environment 27: 1–27.CrossRefGoogle Scholar
  6. Bates, D.B., Maechler, M., and Bolker, B. (2011). lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999375-39. Available at: http://CRAN.R-project.org/package=lme4.
  7. Bellon, M. R., and Taylor, J. E. (1993). “Folk” Soil Taxonomy and the Partial Adoption of New Seed Varieties. Economic Development and Cultural Change 41(4): 763–786.CrossRefGoogle Scholar
  8. Berlin, B. (1992). Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. Princeton University Press, Princeton.CrossRefGoogle Scholar
  9. Bernard, H. R. (2011). Research Methods in Anthropology: Qualitative and Quantitative Approaches, 5th ed. Altamira Press, Lanham.Google Scholar
  10. Brondízio, E. S. (2011). Forest Resources, Family Networks and the Municipal Disconnect: Examining Recurrent Underdevelopment in the Amazon Estuary. In Pinedo-Vasquez, M., Ruffino, M. L., Padoch, C., and Brondízio, E. S. (eds.), The Amazon Várzea: The Decade Past and the Decade Ahead. Springer, Dordrecht, pp. 207–229.CrossRefGoogle Scholar
  11. Brush, S. B. (2008). Farmers’ Bounty: Locating Crop Diversity in the Contemporary World. Yale University Press, New Haven.Google Scholar
  12. Cavalcante, P. B. (1991). Frutas Comestíveis da Amazônia. Edições CEJUP, Belém.Google Scholar
  13. Chayanov, A. V. (1966). The Theory of Peasant Economy. American Economic Association, Homewood.Google Scholar
  14. Chen, J., Wilson, C. R., and Tapley, B. D. (2010). The 2009 Exceptional Amazon Flood and Interannual Terrestrial Water Storage Change Observed by GRACE. Water Resource Research 46: W12526 doi:10.1029/2010WR009383.Google Scholar
  15. Chibnik, M. (1994). Risky Rivers: The Economics and Politics of Floodplain Farming in Amazonia. University of Arizona Press, Tucson.Google Scholar
  16. Clement, C. R. (1999). 1492 and the Loss of Amazonian Crop Diversity. I. The Relation Between Domestication and Human Population Decline. Economic Botany 53: 12–25.Google Scholar
  17. Clement, C. R., Klüppel, M. P., German, L. A., Almeida, S. S., Major, J., Aragão, L. E. O. C., Guix, J. C., Lleras, E., WinklerPrins, A. M. G. A., Hecht, S. B., and McCann, J. M. (2009). Diversidade Vegetal em Solos Antrópicos da Amazônia. In Teixeira, W. G., Kern, D. C., Madari, B. E., Lima, H. N., and Woods, W. I. (eds.), As Terras Pretas de Índio da Amazônia: Sua Caracterização e Uso deste Conhecimento na Criação de Novas Áreas. Embrapa Amazônia Ocidental, Manaus, pp. 147–161.Google Scholar
  18. Clement, C. R., McCann, J. M., and Smith, N. J. H. (2003). Agrobiodiversity in Amazônia and its Relationship with Dark Earths. In Kern, D. C., Lehmann, J., Glaser, B., and Woods, W. I. (eds.), Amazonian Dark Earths: Origins Properties and Management. Kluwer Press, Dordrecht, pp. 159–178.Google Scholar
  19. Coomes, O. T. (2010). Of Stakes, Stems, and Cuttings: The Importance of Local Seed Systems in Traditional Amazonian Societies. The Professional Geographer 62(3): 323–334.CrossRefGoogle Scholar
  20. Coomes, O. T., and Ban, N. (2004). Cultivated Plant Species Diversity in Home Gardens of an Amazonian Peasant Village in Northeastern Peru. Economic Botany 58(3): 420–434.CrossRefGoogle Scholar
  21. Denevan, W. M. (1984). Ecological Heterogeneity and Horizontal Zonation of Agriculture in the Amazon Floodplain. In Schmink, M., and Wood, C. H. (eds.), Frontier Expansion in Amazonia. University Press of Florida, Gainesville, pp. 311–336.Google Scholar
  22. Di Falco, S., and Perrings, C. (2005). Crop Biodiversity, Risk Management and the Implications of Agricultural Assistance. Ecologial Economics 55: 459–466.CrossRefGoogle Scholar
  23. Duelli, P., and Obrist, M. K. (2003). Regional Biodiversity in an Agricultural Landscape: the Contribution of Seminatural Habitat Islands. Basic and Applied Ecology 4: 129–138.CrossRefGoogle Scholar
  24. Estrada, A., Coates-Estrada, R., and Merritt, D. A. (1997). Anthropogenic Landscape Changes and Avian Diversity at Los Tuxtlas, Mexico. Biodiversity Conservation 6: 19–43.CrossRefGoogle Scholar
  25. Falcão, N. P. S., and Borges, L. F. (2006). Effect of Amazonian Dark Earth Fertility on Nutritional Status and Fruit Production of Papaya (Carica papaya L.) in Central Amazonia. Acta Amazonica 36(4): 401–406.CrossRefGoogle Scholar
  26. Fraser, J. A. (2010). Caboclo Horticulture and Amazonian Dark Earths Along the Middle Madeira River, Brazil. Human Ecology 38(5): 651–662.CrossRefGoogle Scholar
  27. Fraser, J. A., Alves-Pereira, A., Junqueira, A. B., Peroni, N., and Clement, C. R. (2012). Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia. PLoS One 7(8): e43636 doi:10.1371/journal.pone.0043636.CrossRefGoogle Scholar
  28. Fraser, J. A., Junqueira, A. B., and Clement, C. R. (2011). Homegardens on Amazonian Dark Earths, Non-Anthropogenic Upland, and Floodplain Soils Along the Brazilian Middle Madeira River Exhibit Diverging Agrobiodiversity. Economic Botany 65(1): 1–12.CrossRefGoogle Scholar
  29. Gelman, A. (2008). Scaling Regression Inputs by Dividing by Two Standard Deviations. Statistics in Medicine 27(15): 2865–2873.Google Scholar
  30. Gelman, A., and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.Google Scholar
  31. German, L. A. (2003). Ethnoscientific Understandings of Amazonian Dark Earths. In Lehmann, J., Kern, D. C., Glaser, B., and Woods, W. I. (eds.), Amazonian Dark Earths: Origin, Properties Management. Kluwer Academic Publishers, Dordrecht, pp. 179–201.Google Scholar
  32. Glaser, B., and Birk, J. J. (2012). State of the Scientific Knowledge on Properties and Genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta 82: 39–51.CrossRefGoogle Scholar
  33. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. (2001). The “terra preta” Phenomenon: a Model for Sustainable Agriculture in the Humid Tropics. Naturwissenschaften 88: 37–41.CrossRefGoogle Scholar
  34. Heckenberger, M. J., Kuikuro, A., Kuikuro, U. T., Russell, J. C., Schmidt, M., Fausto, C., and Franchetto, B. (2003). Amazonia 1492: Pristine Forest or Cultural Parkland? Science 301(5640): 1710–1714.CrossRefGoogle Scholar
  35. Hiraoka, M., Yamamoto, S., Matsumoto, E., Nakamura, S., Falesi, I. C., and Baena, A. R. C. (2003). Contemporary Use and Management of Amazonian Dark Earths. In Lehmann, J., Kern, D. C., Glaser, B., and Woods, W. I. (eds.), Amazonian Dark Earths: Origin, Properties Management. Kluwer Academic Publishers, Dordrecht, pp. 395–396.Google Scholar
  36. Instituto Brasileiro de Geografia e Estatística (IBGE). (2010). Brazilian Institute of Geography and Statistics, Rio de Janeiro. Available at: http://www.ibge.br.gov.
  37. Jackson, L. E., Pascual, U., and Hodgkin, T. (2007). Utilizing and Conserving Agrobiodiversity in Agricultural Landscapes. Agriculture, Ecosystems and Environment 121: 196–210.CrossRefGoogle Scholar
  38. Junqueira, A. B., Shepard Jr., G. H., and Clement, C. R. (2010). Secondary Forests on Anthropogenic Soils in Brazilian Amazonia Conserve Agrobiodiversity. Biodiversity and Conservation 19(7): 1933–1961.Google Scholar
  39. Kawa, N. C., Rodrigues, D., and Clement, C. R. (2011). Useful Species Richness, Proportion of Exotic Species, and Market Orientation on Amazonian Dark Earths and Oxisols. Economic Botany 65(2): 169–177.CrossRefGoogle Scholar
  40. Kumar, B. M., and Nair, P. K. R. (2004). The Enigma of Tropical Homegardens. Agroforestry Systems 61: 135–152.Google Scholar
  41. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and Nepstad, D. (2011). The 2010 Amazon Drought. Science 331: 554–554.CrossRefGoogle Scholar
  42. Lima, D. M. (2004). ‘The roça legacy’: Land Use and Kinship Dynamics in Nogueira, an Amazonian Community of the mIddle Solimões Region. In Nugent, S., and Harris, M. (eds.), Some Other Amazonians: Perspectives on Modern Amazonia. Institute for the Study of the Americas, London, pp. 12–36.Google Scholar
  43. Loreau, M., Mouquet, N., and Gonzalez, A. (2003). Biodiversity as Spatial Insurance in Heterogenous Landscapes. Proceedings of the Natlional Academy Sciences USA 100: 12765–12770.CrossRefGoogle Scholar
  44. Major, J., Clement, C. R., and DiTommaso, A. (2005). Influence of Market Orientation on Food Plant Diversity of Farms Located on Amazonian Dark Earth in the Region of Manaus, Amazonas, Brazil. Economic Botany 59: 77–86.CrossRefGoogle Scholar
  45. Miller, R. P., and Nair, P. K. R. (2006). Indigenous Agroforestry Systems in Amazonia: from Prehistory to Today. Agroforestry Systems 66: 151–164.CrossRefGoogle Scholar
  46. Moran, E. F. (1993). Through Amazonian Eyes: The Human Ecology of Amazonian Populations. University of Iowa Press, Iowa City.Google Scholar
  47. Padoch, C. (1999). Varzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains. New York Botanical Garden Press, New York.Google Scholar
  48. Padoch, C., and de Jong, W. (1991). The House Gardens of Santa Rosa: Diversity and Variability in an Amazonian Agricultural System. Economic Botany 45: 166–175.CrossRefGoogle Scholar
  49. Perrault-Archambault, M., and Coomes, O. T. (2008). Distribution of Agrobiodiversity in Home Gardens Along the Corrientes River, Peruvian Amazon. Economic Botany 62: 109–126.CrossRefGoogle Scholar
  50. Perreault, T. (2005). Why Chacras (swidden gardens) Persist: Agrobiodiversity, Food Security, and Cultural Identity in the Ecuadorian Amazon. Human Organization 64: 327–339.CrossRefGoogle Scholar
  51. Perz, S. G. (2001). Household Demographic Factors as Life Cycle Determinants of Land Use in the Amazon. Population Research and Policy Review 20: 159–186.CrossRefGoogle Scholar
  52. Perz, S. G., and Walker, R. T. (2000). Household Life Cycles and Secondary Forest Cover Among Small Farm Colonists in the Amazon. World Development 30(6): 1009–1027.CrossRefGoogle Scholar
  53. Posey, D. A. (1985). Indigenous Management of Tropical Forest Ecosystems: the Case of the Kayapo Indians of the Brazilian Amazon. Agroforestry Systems 3(2): 139–158.CrossRefGoogle Scholar
  54. R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/.
  55. Schielzeth, H. (2010). Simple Means to Improve the Interpretability of Regression Coefficients. Methods in Ecology and Evolution 1(2): 103–113.CrossRefGoogle Scholar
  56. Shepard, G. H., and Ramirez, H. (2011). “Made in Brazil”: Human Dispersal of the Brazil Nut (Bertholletia excelsa, Lecythidaceae) in Ancient Amazonia. Economic Botany 65(1): 44–65.CrossRefGoogle Scholar
  57. Thomas, C. J. G., and Marshall, E. J. P. (1999). Arthropod Abundance and Diversity in Differently Vegetated Margins of Arable Fields. Agriculture, Ecosystems and Envrionment 72: 131–144.CrossRefGoogle Scholar
  58. Thrupp, L. A. (2002). Linking Agricultural Biodiversity and Food Security: the Valuable Role of Agrobiodiversity for Sustainable Agriculture. International Affairs 76: 265–281.Google Scholar
  59. Walker, R. T., and Homma, A. K. O. (1996). Land Use and Land Cover Dynamics in the Brazilian Amazon: an Overview. Ecological Economics 18: 67–80.CrossRefGoogle Scholar
  60. Wickham, H. (2009). Ggplot2: Elegant Graphics for Data Analysis. Springer, New York.CrossRefGoogle Scholar
  61. WinklerPrins, A. M. G. A. (2002). Seasonal Floodplain-Upland Migration Along the Lower Amazon River. Geographical Review 92: 415–431.CrossRefGoogle Scholar
  62. Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., Mew, T. W., Teng, P. S., Wang, Z., and Mundt, C. C. (2000). Genetic Diversity and Disease Control in Rice. Nature 406: 718–722.CrossRefGoogle Scholar
  63. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nicholas C. Kawa
    • 1
  • José A. Clavijo Michelangeli
    • 2
  • Charles R. Clement
    • 3
  1. 1.Department of AnthropologyBall State UniversityMuncieUSA
  2. 2.Department of Crop ScienceNorth Carolina State UniversityRaleignUSA
  3. 3.Department of Agronomic SciencesInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations