Human Ecology

, Volume 40, Issue 4, pp 487–509 | Cite as

The Signs of Maize? A Reconsideration of What δ13C Values Say about Palaeodiet in the Andean Region

  • Lauren Cadwallader
  • David G. Beresford-Jones
  • Oliver Q. Whaley
  • Tamsin C. O’Connell
Article

Abstract

Palaeodietary isotope studies have long assumed C4 signals in South American archaeological populations to be due to the consumption of maize (Zea mays), which in turn, underlie interpretations important social processes. We presents δ13C data from wild plants (n = 89) from the south coast of Peru, which may have been significant in the diets of humans and animals in the past. A combination of these with previously published results from domesticates of the Andean region (n = 144) brings the proportion of C4 species likely to have contributed to the human dietary isotopic signal, whether directly or indirectly, to almost one third. This undermines the widespread assumption that maize is the only plant to contribute a C4 signal to diets. By considering both direct and indirect routes whereby C4 plants may have contributed to the human isotopic signal we show the need for a reassessment of how palaeodietary studies are interpreted in the Andes, and perhaps elsewhere in the Americas.

Keywords

Human and animal palaeodiet Andes C3 and C4 plants Wild plant use Camelids 

References

  1. Altieri, M. A., Anderson, M. K., and Merrick, L. C. (1987). Peasant Agriculture and the Conservation Of Crop And Wild Plant Resources. Conservation Biology 1(1): 49–58.CrossRefGoogle Scholar
  2. Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive considerations. In Sandford, M. K. (ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology. Gordon and Breach, Philadelphia, pp. 59–130.Google Scholar
  3. Ambrose, S. H., and Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Lambert and, J. B., and Grupe, G. (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, Berlin, pp. 1–37.Google Scholar
  4. Apg, A. P. G. (1998). An Ordinal Classifaction for the Families of Flowering Plants. Annals of the Missouri Botanical Garden 85: 531–553.CrossRefGoogle Scholar
  5. Baaijens, G. J., and Veldkamp, J. F. (1991). Sporobolus (Gramineae) in Malesia. Blumea 35(2): 393–458.Google Scholar
  6. Batanouny, K. H., Stichler, W., and Ziegler, H. (1988). Photosynthetic Pathways, Distribution, and Ecological Characteristics of Grass Species in Egypt. Oecologia 75(4): 539–548.CrossRefGoogle Scholar
  7. Beresford-Jones, D. G. (2005). Pre-Hispanic Prosopis-Human Relationships on the South Coast of Peru: Riparian Forests in the Context of Environmental and Cultural Trajectories of the Lower Ica Valley. Ph.D. thesis, Department of Archaeology, University of Cambridge.Google Scholar
  8. Beresford-Jones, D. G. (2011). The Lost Woodlands of Ancient Nasca. A Case-Study in Ecological and Cultural Collapse. Oxford University Press, Oxford.Google Scholar
  9. Beresford-Jones, D. G., Arce Torres, S., Whaley, O. Q., and Chepstow-Lusty, A. J. (2009). The Role of Prosopis in Ecological and Landscape Change in the Samaca Basin, Lower Ica Valley, South Coast Peru from the Early Horizon to the Late Intermediate Period. Latin American Antiquity 20(2): 303–332.Google Scholar
  10. Beresford-Jones, D. G., Whaley, O. Q., Alarcón, C., and Cadwallader, L. (2011). Two Millennia of Changes in Human Ecology: Archaeobotanical and Invertebrate records from the Lower Ica Valley, South Coast Peru. Vegetation History and Archaeobotany 20(4): 273–292.Google Scholar
  11. Beuning, K. R. M., and Scott, J. E. (2002). Effects of Charring on the Carbon Isotopic Composition of Grass (Poaceae) Epidermis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1–2): 169–181.CrossRefGoogle Scholar
  12. Brack Egg, A. (1999). Diccionario Enciclopédico de Plantas Útiles del Perú. CBC, Cusco.Google Scholar
  13. Bridson, D., and Forman, L. (eds.) (2010). The Herbarium Handbook. Kew Publishing, Royal Botanic Gardens, Kew, London.Google Scholar
  14. Bruno, M. C. (2006). A morphological approach to documenting the domestication of Chenopodium in the Andes. In Zeder, M. A., Bradley, D. G., Emshwiller, E., and Smith, B. D. (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms.. University of California Press, Berkeley, California, pp. 32–45.Google Scholar
  15. Burger, R. L. (2012). Central Andean language expansion and the Chavín sphere of interaction. In Heggarty, P., and Beresford-Jones, D. G. (eds.), Archaeology and Language in the Andes. British Academy/Oxford University Press, London, pp. 133–159.Google Scholar
  16. Burger, R. L., and van der Merwe, N. J. (1990). Maize and the Origin of Highland Chavín Civilization: An Isotopic Perspective. American Anthropologist 92(1): 85–95.CrossRefGoogle Scholar
  17. Cajal, J. L. (1989). Uso de Hábitat por Vicuñas y Guanacos en la Reserve San Guillermo, Argentina. Vida Silvestre Neotropical 2: 21–31.Google Scholar
  18. Castetter, E. F., and Underhill, R. M. (1935). The Ethnobiology of the Papago. Ethnobiology Studies in the American Southwest 2, Biological Series Volume 4 (3). Universtiy of New Mexico Bulletin, Albuquerque.Google Scholar
  19. Cavagnaro, J. B. (1988). Distribution on C3 and C4 Grasses at Different Altitudes in a Temperate Arid Region of Argentina. Oecologia 76(2): 273–277.CrossRefGoogle Scholar
  20. Cieza de León, P. d. ([1553] 1955). La Crónica del Peru. Lima, Perú: Fondo Editorial de la Pontificia Universidad Católica del Perú (PUCP).Google Scholar
  21. Collins, R. P., and Jones, M. B. (1986). The Influence of Climatic Factors on the Distribution of C4 Species in Europe. Vegetatio 64(2/3): 121–129.CrossRefGoogle Scholar
  22. Cook, A. G., and Parrish, N. (2005). Gardens in the Desert: Archaeobotanical Analysis from the Lower Ica Valley, Peru. Andean Past 7: 135–156.Google Scholar
  23. D’Altroy, T. N. (2001). Politics, resources and blood in the Inka empire. In Alcock, S. E., D’Altroy, T. N., Morrison, K. D., and Sinopoli, C. M. (eds.), Empires: Perspectives from Archaeology and History. Cambridge University Press, Cambridge, pp. 201–226.Google Scholar
  24. D’Altroy, T. N., and Schreiber, K. (2004). Andean empires. In Silverman, H. I. (ed.), Andean Archaeology, vol. 2. Blackwell Publishing, Oxford, pp. 255–279.Google Scholar
  25. DeNiro, M. J. (1988). Marine food sources for prehistoric coastal Peruvian camelids: Isotopic evidence and implications. In Wing, E. S., and Wheeler, J. C. (eds.), Economic Prehistory of the Central Andes, vol. British Archaeological Reports International Series 427. British Archaeological Reports, Oxford, pp. 119–129.Google Scholar
  26. DeNiro, M. J., and Epstein, S. (1978). Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42(5): 495–506.CrossRefGoogle Scholar
  27. DeNiro, M. J., and Hastorf, C. A. (1985). Alteration of 15N/14N and 13C/12C Ratios of Plant Matter During the Initial Stages of Diagenesis: Studies Utilizing Archaeological Specimens from Peru. Geochimica et Cosmochimica Acta 49(1): 97–115.CrossRefGoogle Scholar
  28. Doliner, L. H., and Jolliffe, P. A. (1979). Ecological Evidence Concerning the Adaptive Significance of the C4 Dicarboxylic Acid Pathway of Photosynthesis. Oecologia 38(1): 23–34.CrossRefGoogle Scholar
  29. Ehleringer, J. R., and Björkman, O. (1977). Quantum Yields for CO2 Uptake in C3 and C4 Plants. Plant Physiology 59: 86–90.CrossRefGoogle Scholar
  30. Eickmeier, W. G., and Bender, M. M. (1976). Carbon Isotope ratios of Crassulacean Acid Metabolism Species in Relation to Climate and Phytosociology. Oecologia 25(4): 341–347.CrossRefGoogle Scholar
  31. El Shaer, H. M. (2006). Halophytes as cash crops for animal feeds in arid and semi-arid regions. In Münir, Ö., Waisel, Y., Khan, M. A., and Görk, G. (eds.), Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Verlag, Basel, pp. 117–128.CrossRefGoogle Scholar
  32. Emmons, L. H. (1990). Neotropical Rainforest Mammals - A Field Guide. The University of Chicago Press, Chicago.Google Scholar
  33. Finucane, B. C. (2007). Mummies, Maize, and Manure: Multi-Tissue Stable Isotope Analysis of Late Prehistoric Human Remains from the Ayacucho Valley, Peru. Journal of Archaeological Science 34(12): 2115–2124.CrossRefGoogle Scholar
  34. Finucane, B. C. (2009). Maize and Sociopolitical Complexity in the Ayacucho Valley, Peru. Current Anthropology 50(4): 535–545.CrossRefGoogle Scholar
  35. Finucane, B. C., Agurto, P. M., and Isbell, W. H. (2006). Human and Animal Diet at Conchopata, Peru: Stable Isotope Evidence for Maize Agriculture and Animal Management Practices During the Middle Horizon. Journal of Archaeological Science 33(12): 1766–1776.CrossRefGoogle Scholar
  36. Flores Ochoa, J., and Macquarrie, K. (1994). Moder-day herders: An Andean legacy continues. In Blassi, J. (ed.), Gold of the Andes: The Llamas, Alpacas, Vicuñas and Guanacos of South America. Patthey & Sons, Madrid, pp. 100–193.Google Scholar
  37. Food and Agriculture Organization of the United Nations (1992). Maize in Human Nutrition - Chemical Composition and Nutritional Value of Maize. http://www.fao.org/docrep/T0395E/T0395E03.htm#Gross%20chemical%20composition, accessed November 15, 2011.
  38. Froehle, A. W., Kellner, C. M., and Schoeninger, M. J. (2010). Effect of Diet and Protein Source on Carbon Stable Isotope Ratios in Collagen: Follow Up to Warinner and Tuross 2009. Journal of Archaeological Science 37: 2662–2670.CrossRefGoogle Scholar
  39. Gil, A. F., Neme, G. A., Tykot, R. H., Novellino, P., Cortegoso, V., and Durán, V. (2009). Stable Isotopes and Maize Consumption in Central Western Argentina. International Journal of Osteoarchaeology 19(2): 215–236.CrossRefGoogle Scholar
  40. Gil, A. F., Neme, G. A., and Tykot, R. H. (2011). Stable Isotopes and Human Diet in Central Western Argentina. Journal of Archaeological Science 38(7): 1395–1404.CrossRefGoogle Scholar
  41. Godelier, M. (1977). Perspectives in Marxist Anthropology. Cambridge University Press, Cambridge.Google Scholar
  42. Goldstein, P. S. (2003). From stew-eaters to maize-drinkers: The chicha economy and the Tiwanaku expansion. In Bray, T. L. (ed.), The Archaeology and Politics of Food and Feasting in Early States and Empires. Kluwer Academic/Plenum Publishers, New York, pp. 143–172.CrossRefGoogle Scholar
  43. Golte, J. (2009). Moche Cosmología y Sociedad: Una Interpretación Iconográfica. IEP, Instituto de Estudios Peruanos; CBC, Centro Bartolomé de las Casas, Lima.Google Scholar
  44. Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., and Trugo, L. C. (1989). Chemical Composition and Protein Quality of Some Local Andean Food Sources. Food Chemistry 34(1): 25–34.CrossRefGoogle Scholar
  45. Hastorf, C. A. (1991). Gender, space, and food in prehistory. In Gero, J. M., and Conkey, M. W. (eds.), Engendering Archaeology. Basil Blackwell Ltd., Oxford, pp. 132–162.Google Scholar
  46. Hastorf, C. A., and Johannessen, S. (1993). Pre-Hispanic Political Change and the Role of Maize in the Central Andes of Peru. American Anthropologist 95(1): 115–138.CrossRefGoogle Scholar
  47. Hatch, M. D., and Slack, C. R. (1966). Photosynthesis by Sugar-Cane Leaves: A New Caboxylation Reaction and the Pathway of Sugar Formation. Biochemical Journal 101(1): 103–111.Google Scholar
  48. Hesla, B. I., Tieszen, L. L., and Imbamba, S. K. (1982). A Systematic Survey of C3 and C4 Photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica 16: 196–205.Google Scholar
  49. Hodgson, W. C. (2001). Food Plants of the Sonoran Desert. University of Arizona Press, Tuscon, Arizona.Google Scholar
  50. Hoefs, J. (1997). Stable Isotope Geochemistry. Springer, Berlin.Google Scholar
  51. Holden, T. G. (1991). Evidence of Prehistoric Diet from Northern Chile: Coprolites, Gut Contents and Flotation Samples from the Tulan Quebrada. World Archaeology 22(3): 320–331.CrossRefGoogle Scholar
  52. Horn, P., Hölzl, S., Rummel, S., Åberg, G., Schiegl, S., Biermann, D., Struck, U., and Rossmann, A. (2009). Humans and camelids in river oases of the Ica-Palpa-Nazca region in pre-Hispanic times - Insights from H-C-N-O-S-Sr isotope signatures. In Reindel, M. and Wagner, G. A. (eds.), New Technologies for Archaeology: Multidisciplinary Investigations in Palpa and Nasca, Peru. Natural Science in Archaeology. Springer, Berlin, pp. 173–192.Google Scholar
  53. Isbell, W. H. (1988). City and state in Middle Horizon Huari. In Keatinge, R. W. (ed.), Peruvian Prehistory. Cambridge University Press, Cambridge, pp. 164–189.Google Scholar
  54. Jim, S., Ambrose, S. H., and Evershed, R. P. (2004). Stable Carbon Isotopic Evidence for Differences in the Dietary Origin of Bone Cholesterol, Collagen and Apaptite: Implications for their use in Palaeodietary Reconstruction. Geochimica et Cosmochimica Acta 68: 61–72.CrossRefGoogle Scholar
  55. Judd, W. S., Campbell, C. S., Kellogg, E. A., and Stevens, P. F. (1999). Plant Systematics: A Phylogenetic Approach. Sinauer, Sunderland, Massachusetts.Google Scholar
  56. Kadereit, G., Borsch, T., Weising, K., and Freitag, H. (2003). Phylogeny of Amaranthaceae and Chenopodiaceae and the Evolution of C4 Photosynthesis. International Journal of Plant Sciences 164(6): 959–986.CrossRefGoogle Scholar
  57. Kellner, C. M., and Schoeninger, M. J. (2008). Wari’s Imperial Influence on Local Nasca Diet: The Stable Isotope Evidence. Journal of Anthropological Archaeology 27: 226–243.CrossRefGoogle Scholar
  58. Knight Piésold Consultores, S. A. (2003). Evaluación preliminar del uso de hábitat del Guanaco (Lama guanicoe) en la zona comprendida entre la Pampa Yarabamba y la cabecera de la Quebrada Linga. Estudio de Impacto Ambiental Proyecto Sulfuros Primarios. Sociedad Minera Cerro Verde S.A.A, Arequipa, Peru.Google Scholar
  59. Körner, C., Farquhar, G. D., and Roksandic, Z. (1988). A Global Survey of Carbon Isotope Discrimination in Plants from High Altitude. Oecologia 74(4): 623–632.CrossRefGoogle Scholar
  60. Lee-Thorp, J. A. (2008). On Isotopes and Old Bones. Archaeometry 50: 925–950.CrossRefGoogle Scholar
  61. Little, E. A., and Schoeninger, M. J. (1995). The Late Woodland diet on Nantucket Island and the Problem of Maize in Coastal New England. American Antiquity 60(2): 351–368.CrossRefGoogle Scholar
  62. Llano, C. (2009). Photosynthetic Pathways, Spatial Distribution, Isotopic Ecology, and Implications for Pre-Hispanic Human Diets in Central-Western Argentina. International Journal of Osteoarchaeology 19(2): 130–143.CrossRefGoogle Scholar
  63. Lozada, M. C., Buikstra, J. E., Rakita, G., and Wheeler, J. C. (2009). Camelid herders: The forgotten specialists in the coastal señorío of Chiribaya, southern Peru. In Marcus, J., and Williams, P. R. (eds.), Andean Civilization: A Tribute to Michael E. Moseley. Cotsen Institute of Archaeology, University of California, Los Angeles, pp. 351–364.Google Scholar
  64. Marino, B. D., and McElroy, M. B. (1991). Isotopic Composition of Atmospheric CO2 Inferred from Carbon in C4 Plant Cellulose. Nature 349(6305): 127–131.CrossRefGoogle Scholar
  65. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E. S., and Doebley, J. F. (2002). A Single Domestication for Maize Shown by Multilocus Microsatellite Genotyping. Proceedings of the National Academy of Sciences of the United States of America 99: 6080–6084.CrossRefGoogle Scholar
  66. McCorkle, C. M. (1987). Punas, pastures and fields: Grazing strategies and the agropastoral dialectic in an indigenous Andean community. In Browman, D. L. (ed.), Arid Land Use Strategies and Risk Management in the Andes: A Regional Anthropological Perspective. Westview Press, Boulder, pp. 57–80.Google Scholar
  67. Minnis, P. E. (1989). Prehistoric Diet in the Northern Southwest: Macroplant Remains from Four Corners Feces. American Antiquity 54(3): 543–563.CrossRefGoogle Scholar
  68. Moseley, M. E. (1975). The Maritime Foundations of Andean Civilization. Cummings, Merlo Perk.Google Scholar
  69. Mulroy, T. W., and Rundel, P. W. (1977). Annual Plants: Adaptations to Desert Environments. BioScience 27(2): 109–114.CrossRefGoogle Scholar
  70. Murra, J. V. (1985). ‘El archipelago vertical’ revisited. In Masuda, S., Shimada, I., and Morris, C. (eds.), Andean Ecology and Civilization. University of Tokyo, Tokyo.Google Scholar
  71. Nabhan, G. P. (1985). Gathering the Desert. University of Arizona, Tuscon, Arizona.Google Scholar
  72. National Research Council, U. S. (1989). Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. Books for Business, New York.Google Scholar
  73. O’Leary, M. H. (1988). Carbon Isotopes in Photosynthesis. BioScience 38(5): 328–336.CrossRefGoogle Scholar
  74. Panarello, H. O., and Fernández, J. (2002). Stable Carbon Isotope Measurements on Hair from Wild Animals from Altiplanic Environments of Jujuy. Radiocarbon 44: 709–716.Google Scholar
  75. Piacenza, L. (2005). Evidencias Botánicas en Asentamientos Nasca. Boletín Museo de Arqueología y Antropología 5(1): 3–13.Google Scholar
  76. Quilter, J., and Stocker, T. (1983). Subsistence Economies and the Origins of Andean Complex Societies. American Anthropologist 85(3): 545–562.CrossRefGoogle Scholar
  77. Raghavendra, A. S., and Das, V. S. R. (1978). The occurrence of C4-Photosynthesis: A Supplementary List of C4 Plants Reported During late 1974 - mid 1977. Photosynthetica 12: 200–208.Google Scholar
  78. Reitz, E. J. (1988). Faunal Remains from Paloma, an Archaic Site in Peru. American Anthropologist 90(2): 310–322.CrossRefGoogle Scholar
  79. Roque, J., Cano, A., and Cook, A. (2003). Restos Vegetales Del Sitio Arqueológico Casa Vieja, Callango (Ica). Revista Peruana de Biología 10(1): 33–43.Google Scholar
  80. Rostworowski de Diez Canesco, M. (1981). Recursos Naturales Renovables y Pesca, Siglos XVI y XVII. Instituto de Estudios Peruanos, Lima, Perú.Google Scholar
  81. Sage, R. F., Sage, T. L., Pearcy, R. W., and Borsch, T. (2007). The Taxonomic Distribution of C4 Photosynthesis in Amaranthaceae Sensu Stricto. American Journal of Botany 94(12): 1992–2003.CrossRefGoogle Scholar
  82. Salomon, F. (1985). The dynamic potential of the complementarity concept. In Masuda, S., Shimada, I., and Morris, C. (eds.), Andean Ecology and Civilization: An Interdisciplinary Perspective on Andean Ecological Complementarity. University of Tokyo Press, Tokyo, pp. 511–531.Google Scholar
  83. Schoeninger, M. J., and DeNiro, M. J. (1984). Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta 48(4): 625–639.CrossRefGoogle Scholar
  84. Schulz, N., Aceituno, P., and Richter, M. (2011). Phytogeographic Divisions, Climate Change and Plant Dieback Along the Coastal Desert of Northern Chile. Erdkunde 65(2): 169–187.CrossRefGoogle Scholar
  85. Schulze, E.-D., Ellis, R., Schulze, W., Trimborn, P., and Ziegler, H. (1996). Diversity, Metabolic Types and δ13C Carbon Isotope ratios in the Grass Flora of Namibia in Relation to Growth Form, Precipitation and Habitat Conditions. Oecologia 106(3): 352–369.CrossRefGoogle Scholar
  86. Sharp, Z. (2007). Principles of Stable Isotope Geochemistry. Pearson Education, Inc., Upper Saddle River.Google Scholar
  87. Shimada, M., and Shimada, I. (1985). Prehistoric Llama Breeding and Herding on the North Coast of Peru. American Antiquity 50(1): 3–26.CrossRefGoogle Scholar
  88. Silverman, H. (1993). Cahuachi in the Ancient Nasca World. University of Iowa Press, Iowa City.Google Scholar
  89. Slovak, N. M., and Paytan, A. (2011). Fisherfolk and Farmers: Carbon and Nitrogen Isotope Evidence from Middle Horizon Ancón, Peru. International Journal of Osteoarchaeology 21: 253–267.CrossRefGoogle Scholar
  90. Slovak, N. M., Paytan, A., and Wiegand, B. A. (2009). Reconstructing Middle Horizon Mobility Patterns on the Coast of Peru Through Strontium Isotope Analysis. Journal of Archaeological Science 36: 157–165.CrossRefGoogle Scholar
  91. Smith, B. N., and Brown, W. V. (1973). The Kranz Syndrome in the Gramineae as Indicated by Carbon Isotopic Ratios. American Journal of Botany 60(6): 505–513.CrossRefGoogle Scholar
  92. Sparks, J. P., and Ehleringer, J. R. (1997). Leaf Carbon Isotope Discrimination and Nitrogen Content for Riparian Trees Along Elevational Transects. Oecologia 109(3): 362–367.CrossRefGoogle Scholar
  93. Squeo, F. A., Arancio, G., Cortés, A., Hiriart, D., and López, D. (2006). Estudio de Línea de Base de Recursos Bióticos Terrestres del AMCP Isal Grande de Atacama (Punta Morro - Desembocadura del Río Copiapó). Informe final. Centro de Estudios Avanzado en Zonas Áridas, La Serena, Chile.Google Scholar
  94. Stahl, P. W. (2008). Animal domestication in South America. In Silverman, H., and Isbell, W. H. (eds.), Handbook of South American Archaeology. Springer, New York.Google Scholar
  95. Thornton, E. K., Defrance, S. D., Krigbaum, J., and Williams, P. R. (2011). Isotopic Evidence for Middle Horizon to 16th Century Camelid Herding in the Osmore Valley, Peru. International Journal of Osteoarchaeology 211(5): 544–567.CrossRefGoogle Scholar
  96. Tieszen, L. L., and Boutton, T. W. (1989). Stable carbon isotopes in terrestrial ecosystem research. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.), Stable Isotopes in Ecological Research. Springer, New York, pp. 167–195.CrossRefGoogle Scholar
  97. Tieszen, L. L., and Chapman, M. (1992). Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama Desert of Northern Chile. In Proceedings of the First World Congress on Mummy Studies. Museo Arqueológico y Etnográfico de Tenerife, Tenerife, pp. 409–426.Google Scholar
  98. Tieszen, L. L., and Fagre, T. (1993a). Carbon Isotopic Variability in Modern and Archaeological Maize. Journal of Archaeological Science 20(1): 25–40.CrossRefGoogle Scholar
  99. Tieszen, L. L., and Fagre, T. (1993b). Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Lambert, J. B., and Grupe, G. (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, Berlin, pp. 121–155.Google Scholar
  100. Tomczak, P. D. (2003). Prehistoric Diet and Socioeconomic Relationships Within the Osmore Valley of Southern Peru. Journal of Anthropological Archaeology 22(3): 262–278.CrossRefGoogle Scholar
  101. Towle, M. A. (1961). The Ethnobotany of Pre-Columbian Peru, vol. 30. Aldine, Chicago.Google Scholar
  102. Turner, B. L., Kingston, J. D., and Armelagos, G. J. (2010). Variation in Dietary Histories Among the Immigrants of Machu Picchu: Carbon and Nitrogen Isotope Evidence. Chungará (Arica) 42: 515–534.CrossRefGoogle Scholar
  103. United States Department of Agriculture 2011 National Nutrient Database for Standard Reference. http://www.nal.usda.gov/fnic/foodcomp/search/index.html, acessed November 15, 2011.
  104. USDA, ARS, National Genetic Resources Program 2012 Germoplasm Resources Information Network - (GRIN) [Online Database]. http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl, accessed November 15, 2011.
  105. Valdez, L. M. (2006). Maize Beer Production in Middle Horizon Peru. Journal of Anthropological Research 62(1): 53–80.Google Scholar
  106. van de Water, P. K., Leavitt, S. W., and Betancourt, J. L. (2002). Leaf δ13C Variability with Elevation, Slope Aspect, and Precipitation in the Southwest United States. Oecologia 132(3): 332–343.CrossRefGoogle Scholar
  107. Verano, J. W., and DeNiro, M. J. (1993). Locals or foreigners? Morphological, biometric, and isotopic approaches to the question of group affinity in human skeletal remains recovered from unusual archaeological contexts. In Sandford, M. K. (ed.), Food and Nutrition in History and Anthropology, vol. 10. Gordon and Breach, Reading, pp. 361–386.Google Scholar
  108. Vitousek, P. M., Matson, P. A., and Turner, D. R. (1988). Elevational and Age Gradients in Hawaiian Montane Rainforest: Foliar and Soil Nutrients. Oecologia 77(4): 565–570.CrossRefGoogle Scholar
  109. Vitousek, P. M., Field, C. B., and Matson, P. A. (1990). Variation in Foliar δ13C in Hawaiian Metrosideros polymorpha: A Case of Internal Resistance? Oecologia 84(3): 362–370.Google Scholar
  110. Wang, R. Z. (2004). Plant Functional Types and Their Ecological Responses to Salinization in Saline Grasslands, Northeastern China. Photosynthetica 42(4): 511–519.CrossRefGoogle Scholar
  111. Wang, G. A., Han, J. M., Faiia, A., Tan, W. B., Shi, W. Q., and Liu, X. Z. (2008). Experimental Measurements of Leaf Carbon Isotope Discrimination and Gas Exchange in the Progenies of Plantago depressa and Setaria viridis Collected from a Wide Altitudinal Range. Physiologia Plantarum 134(1): 64–73.CrossRefGoogle Scholar
  112. Watson, L., and Dallwitz, M. J. (1994). The Grass Genera of the World. C.A.B. International, Cambridge.Google Scholar
  113. Weir, G. H., and Dering, J. P. (1986). The lomas of Paloma: Human-environment relations in a central Peruvian fog oasis: Archaeobotany and palynology. In Matos, R., Turpin, S. A., and Eling, H. H. (eds.), Andean Archaeology, Papers in Memory of Clifford Evans, vol. Monograph XXVII. Institute of Archaeology, University of California, Los Angeles, pp. 18–44.Google Scholar
  114. Whaley, O. Q., Beresford-Jones, D. G., Milliken, W., Orellana, A., Smyk, A., and Leguía, J. (2010a). An Ecosystem Approach to Restoration and Sustainable Management of Dry Forest in Southern Peru. Kew Bulletin 65(4): 613–641.CrossRefGoogle Scholar
  115. Whaley, O. Q., Orellana, A., Pérez, E., Tenorio, M., Quinteros, F., Mendoza, M., and Pecho, O. (2010b). Plantas y Vegetación de Ica, Perú - Un recurso para su restauración y conservación. Royal Botanic Gardens, Kew.Google Scholar
  116. Wheeler, J. C. (1995). Evolution and Present Situation of the South American Camelidae. Biological Journal of the Linnean Society 54(3): 271–295.CrossRefGoogle Scholar
  117. Wheeler, J. C., Russel, A. J. F., and Stanley, H. F. (1992). A Measure of Loss: Prehispanic Llama and Alpaca Breeds. Archivos de Zootecnia 41: 467–475.Google Scholar
  118. White, C. D., Nelson, A. J., Longstaffe, F. J., Grupe, G., and Jung, A. (2009). Landscape Bioarchaeology at Pacatnamu, Peru: Inferring Mobility from δ13C and δ15N Values of Hair. Journal of Archaeological Science 36(7): 1527–1537.CrossRefGoogle Scholar
  119. Wilson, A. S., Taylor, T., Ceruti, M. C., Chavez, J. A., Reinhard, J., Grimes, V., Meier-Augenstein, W., Cartmell, L., Stern, B., Richards, M. P., Worobey, M., Barnes, I., and Gilbert, M. T. P. (2007). Stable Isotope and DNA Evidence for Ritual Sequences in Inca Child Sacrifice. Proceedings of the National Academy of Sciences of the United States of America 104(42): 16456–16461.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lauren Cadwallader
    • 1
  • David G. Beresford-Jones
    • 2
  • Oliver Q. Whaley
    • 3
  • Tamsin C. O’Connell
    • 1
    • 2
  1. 1.Department of Archaeology and AnthropologyUniversity of CambridgeCambridgeUK
  2. 2.McDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
  3. 3.Royal Botanical Gardens, KewRichmondUK

Personalised recommendations