Human Ecology

, Volume 40, Issue 1, pp 117–128 | Cite as

Genetic Evidence of the Contribution of Ethnic Migrations to the Propagation and Persistence of the Rare and Declining Scrambling Shrub Caesalpinia bonduc L

  • A. E. Assogbadjo
  • B. Fandohan
  • R. Glèlè Kakaï
  • T. Kyndt
  • O. J. Hardy
  • G. Gheysen
  • B. Sinsin
Article

Abstract

This paper examines the contribution of human migrations to the propagation and maintenance of Caesalpina bonduc by means of an analysis of its population genetics and distribution patterns. One hundred and forty seven sites were surveyed in the three climatic zones of Benin and all individuals of the species were recorded. A set of individuals was randomly selected and sampled from seven populations and morphological variation and genetic diversity were assessed. The study confirmed the presence of the species in all climatic zones but its abundance varied greatly. Morphological variability between populations and zones was low in comparison with the high amount of variation within populations. AFLP and cpDNA fingerprinting revealed an extremely low genetic diversity within populations and a low genetic differentiation, suggesting parental links between populations. The results support the hypothesis of human involvement in Caesalpinia dispersal and persistence in Benin. However, the low genetic diversity may imply high risks for future extinction. We recommend that gene flow among the remaining populations be supported in order to conserve the species.

Keywords

Benin Caesalpinia bonduc L. Distribution patterns Genetic diversity Morphology 

References

  1. Adomou, C. A. (2005). Vegetation Patterns and Environmental gradients in Benin. Implications for biogeography and conservation. PhD Dissertation. Wageningen University, The Netherlands.Google Scholar
  2. Albaladejo, R. G., Carrillo, L. F., Aparicio, A., Fernandez-Manjarres, J. F., and Gonzalez-Varo, J. P. (2009). Population genetic structure in Myrtus communis L. in a chronically fragmented landscape in the Mediterranean: can gene flow counteract habitat perturbation? Plant Biology 11: 442–453.CrossRefGoogle Scholar
  3. Assogbadjo, A. E., Sinsin, B., Codjia, J. T. C., and Van Damme, P. (2005). Ecological diversity and pulp, seed and kernel production of the baobab (Adansonia digitata) in Benin. Belgian Journal of Botany 138: 47–56.Google Scholar
  4. Assogbadjo, A. E., Kyndt, T., Sinsin, B., Gheysen, G., and Van Damme, P. (2006). Patterns of genetic and morphometric diversity in baobab (Adansonia digitata L.) populations across different climatic zones of Benin (West Africa). Annals of Botany 97: 819–830.CrossRefGoogle Scholar
  5. Ballouche, A., and Neumann, K. (1995). A new contribution to the Holocene vegetation history of the West African Sahel: pollen from Oursi, Burkina Faso and charcoal from three sites in northeast Nigeria. Vegetation History and Archaeobotany 4: 31–39.CrossRefGoogle Scholar
  6. Borges, L. A., Sobrinho, M. S., and Lopes, A. V. (2009). Phenology, pollination, and breeding system of the threatened tree Caesalpinia echinata Lam. (Fabaceae), and a review of studies on the reproductive biology in the genus. Flora 204: 111–130.CrossRefGoogle Scholar
  7. Chakrabarti, S., Biswas, T. K., Seal, T., et al. (2005). Antidiabetic activity of Caesalpinia bonducella F. in chronic type 2 diabetic model in Long-Evans rats and evaluation of insulin secretagogue property of its fractions on isolated islets. Journal of Ethnopharmacology 97: 117–122.CrossRefGoogle Scholar
  8. Dumolin-Lapègue, S., Pemonge, M. H., and Petit, R. J. (1997). An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular Ecology 6: 393–397.CrossRefGoogle Scholar
  9. Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.CrossRefGoogle Scholar
  10. Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.Google Scholar
  11. Fairhead, J., and Leach, M. (1995). False forest history, complicit social analysis: rethinking some West African environmental narratives. World Development 23: 1023–1035.CrossRefGoogle Scholar
  12. FAO. (1999). State of the world’s forests. Doc. FAO.Google Scholar
  13. Goodnight, J. H. (1978). Computing MIVQUE0 Estimates of Variance Components, SAS Technical Report R-105. SAS Institute Inc., Cary, NC.Google Scholar
  14. Hamilton, A. C. (2004). Medicinal plants, conservation and livelihoods. Biodiversity and Conservation 13: 1477–1517.CrossRefGoogle Scholar
  15. Hanski, I. (1999). Metapopulation Ecology. Oxford University Press, Oxford.Google Scholar
  16. Harden, G. J. (2002). Flora of NSW, Vol. 2, 2nd ed. UNSW Press, Sydney.Google Scholar
  17. Hardy, O. J., and Vekemans, X. (1999). Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83: 145–154.CrossRefGoogle Scholar
  18. Hardy, O. J. (2003). Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology 12: 1577–1588.CrossRefGoogle Scholar
  19. Heaton, H. J., Whitkus, R., and Gomez-Pompa, A. (1999). Extreme ecological and phenotypic differences in the tropical tree chicozapote (Manilkara zapota (L.) P. Royen) are not matched by genetic divergence: a random amplified polymorphic DNA (RAPD) analysis. Molecular Ecology 8: 627–632.CrossRefGoogle Scholar
  20. Hutton, I. (2001). Rare plant surveys: Lord Howe Island. Report to NSW Scientific Committee, Sydney.Google Scholar
  21. Ingvarsson, P. K. (2002). Conservation biology: lone wolf to the rescue. Nature 420: 472.CrossRefGoogle Scholar
  22. Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44: 223–270.Google Scholar
  23. Kerharo, J., and Adam, J. G. (1974). La pharmacopée sénégalaise traditionnelle, plantes médicinales et toxiques. Editions Vigot frères, Paris.Google Scholar
  24. Li, S.-J., Zhang, D.-X., Li, L., and Chen, Z.-Y. (2004). Pollination ecology of Caesalpinia crista (Leguminosae: Caesalpinioideae). Acta Botanica Sìnica 46: 271–278.Google Scholar
  25. Lynch, M., and Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91–99.CrossRefGoogle Scholar
  26. Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.Google Scholar
  27. Maranz, S., and Wiesmann, Z. (2003). Evidence for indigenous selection and distribution of the shea tree, Vitellaria paradoxa, and its potential significance to prevailing parkland savanna tree patterns in sub-Saharan Africa north of the equator. Journal of Biogeography 30: 1505–1516.CrossRefGoogle Scholar
  28. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70: 3321–3323.CrossRefGoogle Scholar
  29. Newman, D., and Tallmon, D. A. (2001). Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conservation Biology 15: 1054–1063.CrossRefGoogle Scholar
  30. Nybom, H., and Bartish, I. V. (2000). Effect of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93–114.CrossRefGoogle Scholar
  31. Oudhia, P. (2007). Caesalpinia bonduc (L.) Roxb. In: Schmelzer GH, Gurib-Fakim A, (Eds.), Prota 11(1): Medicinal plants/Plantes médicinales 1. [CD-Rom]. Wageningen: PROTA.Google Scholar
  32. Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945–959.Google Scholar
  33. Richards, C. M. (2000). Inbreeding depression and genetic rescue in a plant metapopulation. The American Naturalist 155: 383–394.CrossRefGoogle Scholar
  34. Rohlf, F.J. (2000). NTSYS-pc Numerical taxonomy and multivariate analysis system Version 2.1. New York: Exeter Software.Google Scholar
  35. SAS Institute Inc. (2003). SAS OnlineDoc® 9.1. Cary, NC: SAS Institute Inc.Google Scholar
  36. Schneider, S., Roessli, D., and Excoffier, L. (2000). Arlequin: A software for population genetic data. Genetics and Biometry Laboratory. University of Geneva, Switzerland.Google Scholar
  37. Sheridan, P. M., and Karowe, D. N. (2000). Inbreeding, outbreeding, and heterosis in the yellow pitcher plant, Sarracenia flava (Sarraceniaceae), in Virginia. American Journal of Botany 87: 1628–1633.CrossRefGoogle Scholar
  38. Sultan, S. E. (2001). Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology 82: 328–343.Google Scholar
  39. Upadhyay, L., Tripathi, K., and Kulkarni, K. S. (2001). A Study of Prostane in the Treatment of Benign Prostatic Hyperplasia. Phytotherapy Research 15: 411–415.CrossRefGoogle Scholar
  40. Vekemans, X. (2002). AFLP-surv version 1.0. Laboratoire de Génétique et Ecologie Végétale. Université Libre de Bruxelles, Belgium.Google Scholar
  41. Vodouhê, F. G., Coulibaly, O., Greene, C., and Sinsin, B. (2009). Estimating the Local Value of Non-Timber Forest Products to Pendjari Biosphere Reserve Dwellers in Benin. Economic Botany 63(397): 412.Google Scholar
  42. Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP a new technique for DNA fingerprinting. Nucleic Acids Research 23: 319–332.CrossRefGoogle Scholar
  43. White, F. (1983). The vegetation of Africa. UNESCO Paris, France. Natural Resources Research 20: 1–356.Google Scholar
  44. Wright, S. (1946). Isolation by distance under diverse systems of mating. Genetics 31: 39–59.Google Scholar
  45. Zawko, G., Krauss, S. L., Dixon, K. W., and Sivasithamparam, K. (2001). Conservation genetics of the rare and endangered Leucopogon obtectus (Ericaceae). Molecular Ecology 10: 2389–2396.CrossRefGoogle Scholar
  46. Zhivotovsky, L. A. (1999). Estimating population structure in diploids with multilocus dominant markers. Molecular Ecology 8: 907–913.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. E. Assogbadjo
    • 1
  • B. Fandohan
    • 1
  • R. Glèlè Kakaï
    • 1
  • T. Kyndt
    • 2
  • O. J. Hardy
    • 3
  • G. Gheysen
    • 2
  • B. Sinsin
    • 1
  1. 1.Laboratory of Applied Ecology, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Department of Molecular BiotechnologyGhent University (UGent)GhentBelgium
  3. 3.Evolutionary Biology & Ecology Unit, CP 160/12, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations